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ABSTRACT 

 

A new method for speaker text-independent verification that 

combines the Infinite Gaussian Mixture Models (IGMM) 

with Support Vector Machine (SVM) is described. Infinite 

GMM supervectors are constructed by stacking the means of 

the adapted mixture then they are trained via an SVM 

classifier. This allows overcoming the problem of fixing a 

priori the number of the involved Gaussians. Experiments 

showed a relative gain of about 12% in terms of the Equal 

Error Rate (EER) and about 59% in terms of the minimum 

detection cost Function (min DCF). Moreover, more 

improvement in terms of both EER and min DCF can be 

noticed when time increases with a lower number of 

components for comparable performance with GMM 

models. 

Key words— Speaker Verification, Infinite GMM, 

Dirichlet Process, Gibbs Sampling, Supervector. 

 

1. INTRODUCTION 

 

We consider the problem of text independent speaker 

verification. The standard approach to this problem is to 

model the speaker using a Gaussian Mixture Model (GMM). 

[1-3]. Another state of the art technique, widely adopted 

within the speaker recognition domain, is the Support 

Vector Machine (SVM) discrimination [4-6]  

Dealing with GMM models in combination with SVM is 

an attractive way to model systems, but one has to fix a 

priori the number of Gaussians involved. This has been an 

open problem for many years and some research works were 

carried out in order to estimate the optimal number [7].This 

has been resolved elegantly by Rasmussen in his original 

paper [8] within a general framework of the so-called 

Dirichlet Process Mixture (DPM) model which extends the 

finite mixture model to an infinite one. Inference in this 

model is done using Gibbs sampling. Literature on Dirichlet 

Process and Gibbs sampling is abundant (see [8,14] for 

example). 

In this paper we propose an IGMM-SVM approach 

rather than the traditional GMM-SVM approach. Combining 

SVM this way with the IGMM models instead of the finite 

traditional GMM will take benefit from both the robustness 

of SVM and the appropriate IGMM estimation of the model 

order. This is supposed to speed up the convergence of the 

algorithm. 

The outline of the paper is as follows. Section 2 

describes the basic theoretical framework for IGMM 

introduced via GMM principle. In section 3 supervectors for 

respectively GMM-SVM and IGMM-SVM systems are 

presented. Section 4 contains a description of the conducted 

experiments with results and comments. Conclusion follows 

in section 5. 
 

2. FINITE VERSUS INFINITE GAUSSIAN MIXTURE 

MODELING 

 

The infinite Gaussian Mixture Model (GMM) is an example 

of Dirichlet Process mixture Models (DPM). These are 

mixture based models built using the Dirichlet Process. The 

Dirichlet Process (DP) mixture model itself is a 

nonparametric Bayesian model for clustering problems 

involving multiple groups of data. Each group of data is 

modeled with a mixture, with the number of components 

being open-ended and inferred automatically by the model. 

Further, components can be shared across groups, allowing 

dependencies across groups to be modeled effectively as 

well as conferring generalization to new groups [14]. In the 

case of speaker verification groups stand for speakers. We 

chose DPM because within this model the number of 

clusters is open-ended which is particularly interesting to 

our problem where there is no prior knowledge about the 

system complexity. Furthermore, the DPMs offer an 

alternative to the drawbacks of the Gaussian Mixture 

Models (GMM) which tend to smear multimodal behavior 

through averaging [15]. Within a DPM model framework, 
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individual characteristics can be balanced with global 

behavior without weakening the quality of the individual 

models. What the DPM model attempts to do is to preserve 

unique behaviors through use of an infinite mixture model. 

Another interesting point is that under the Dirichlet process, 

the number of clusters grows logarithmically with the 

number of data points [16]. 

A comprehensive discussion of alternative perspectives 

on the Dirichlet process mixtures can be found in [9,14]. 

Within our paper, the concept is introduced through the 

finite Gaussian mixture model, whose mixing weight is 

given by a Dirichlet Process prior. The infinite Gaussian 

mixture model is then derived by considering the situation 

where the number of mixtures tends to infinity [8,10,14].  
 

2.1. Finite Gaussian Mixture Model 

 
The probability density function of data, x={x1, …, xn} can 

be modeled by finite mixtures of Gaussian distributions with 

𝑘 components: 

 

p x µ,s,π =  πj
k
j=1 G  µ

j
,s

j

-1
                          (1). 

 

where µ={µ
1
, …, µ

k
} are the means, s={s1, …, sk} are the 

precisions (inverse variances), π={π1, …, πk} are the mixing 

weights (which must be positive and sum to one) and 𝐺 is a 

Gaussian distribution. 

Given a set of training data with N observations, 

x={x1,…xN} the the goal is to estimate the GMM parameters 

(µ, 𝒔, 𝝅). Within a Bayesian framework the inference is 

performed with respect to the posterior probability of the 

parameters. As a reminder for a model 𝑀 Bayes' rule is: 

 

P(M|Y)∝P(Y|M)P(M)  (2). 

 

Where P(M|Y) is the posterior probability of the model M 

given a set of observations Y, P(Y|M) is the likelihood of 

the observations under the model and P(M) is the prior 

probability of the model M. 

In general, priors for the model parameters are specified 

via hyper-parameters, which themselves are given higher 

level priors. The inference of samples from the posterior 

distribution is implemented using Gibbs sampling [10]. 

Component means are given Gaussian priors: 

 

p  µ
j
 ℷ,r ~ G(ℷ,r-1)                         (3). 

 

where prior  mean ℷ and prior  precision 𝑟, are hyper-

parameters that are common to all components. The hyper- 

parameters themselves are given vague Gaussian and 

Gamma hyper-priors: 
 

p ℷ =G µ
x
,σx

2    (4). 

p r =Ga  1, σx
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 ∝r

-
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2

2
   (5). 

 

Where µ
x
 and σx

2 are the mean and the variance of the 

training data points. 

To make inferences with respect to component means, the 

conditional posterior distributions from µ
𝑗
are obtained by 

multiplying the likelihood in (9) by the prior in (11), 

resulting in a Gaussian distribution: 

p  µ
j
|c,x,sj,ℷ,r ∼ G (

x jNjsj+ℷr

Njsj+r
,

1

Njsj+r
)  (6). 

where x j and Nj  are the mean and the number of data points 

belonging to component j, respectively. The latent indicator 

variable c={c1…cN} is introduced to indicate that the data 

point xn belongs to mixture component cn. 

Component precisions are given Gamma priors (15) and 

as for the general case of mixture models the mixing 

weights are given Dirichlet priors with concentration 

parameter  
α

k
  in (16) (See [10] for more details). 

p(sj|c,x,μ
j
,β,ω)∼Ga  β+Nj,  

ωβ+   xi-μj 
2

i=ci:j

β+Nj
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   (7). 

 
p π1, …,πk| c ∼Dirichlet ( α

k , …, α
k )   

  (8). 

To use Gibbs sampling, a very wide used MCMC 

method, for the discrete indicators 𝑐𝑖 , the conditional prior 

for a single indicator, given all the other indicators, is 

required and can be obtained as follows: 

p  cn=j c-n,α =
N-i,j+α/k

N-1+α
   (9). 

where the subscript –i indicates all indices except i and N-n, j 

is the number of data points, excluding xn  which belongs to 

mixture j. The conditional posterior of each cn are given by 

the multiplication of the likelihood and the prior: 

p  cn=j c-n,µ
j
,sj,α ∝

N-n,j+
α

k

N-1+α
s

j

1

2 exp  -
sj xi-µj

 
2

2
   (10). 

 

2.2. Extension to the Infinite Gaussian Mixtures 

 
The previous subsections have been restricted to a finite 

number of mixtures. In Bayesian methodology, inference is 

performed on an infinite number of mixtures. The 

computation with infinite mixtures is finite through the use 

of “represented” and “unrepresented” mixtures. Represented 

mixtures are those that have training data associated with 

them whilst unrepresented mixtures, which are of infinite 

number, have no training data associated with them. 

Let k→∞ in (17): 

p  cn=j c-n,α =  

N-n,j

N-1+α
   j is represented

α

N-1+α
    j is unrepresented

           (11). 

The conditional posteriors of the indicator variables are 

as follows: 



p  cn=j c-n,α ∝
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α

N-1+α
 p(xn|µ

j
,sj)p  µ

j
 ℷ,r p(sj| β, ω)dµ

j
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                                                   for  unrepresented j

   

(12). 

The time complexity for each iteration of Gibbs sampling is 

O(N krep). 

 

3. SUPERVECTOR CONSTRUCTION 

 
3.1. GMM-SVM Supervector 

 
A speaker-independent GMM UBM is trained with acoustic 

data from a set of different speakers to represent general 

speech characteristics. During the enrollment phase, the 

GMM-SVM supervectors are constructed as follows: 

-Acoustic feature vectors X are extracted from all 

available training utterances of the enrolling speaker. 

-MAP adaptation is used to obtain a GMM model M with 

K=512 components from UBM model, only means are 

adapted. 

-The N-dimensional means obtained are normalized by the 

corresponding deviation of each of the Gaussian mixtures 

in the adapted GMM model. 

-A supervector Vx is constructed for speaker S by 

concatenating the N-dimensional means resulting in a 

KxN dimensional vector. An SVM classifier is trained 

using the target GMM supervector. 

-An SVM classifier is trained using the target GMM 

supervectors Vx as positive examples (labeled as +1)  and 

the SVM background, a set of imposter speaker vectors 

common to all enrollment speakers, as negative examples 

(labeled as -1). 

-The UBM model and the SVM parameters are finally 

stored. 

While verification for a given input speech utterance the 

first four steps are the same as before. Then, an SVM 

classifier allows to decide whether the enrolled speaker and 

the input speech came from the same speaker or not. 

 

3.2. Infinite GMM-SVM Supervector 

 

When dealing with the IGMM models the number of hidden 

classes is treated as a parameter to be learned. The  

construction strategy is nearly the same as before: 

-Acoustic feature vectors X are extracted from all 

available training utterances of the enrolling speaker. 

-Gibbs sampler is run upon every input feature utterance 

till convergence. This leads to a mixture model M with 

Krep Gaussian mixtures.  

-The N-dimensional means obtained are normalized by the 

corresponding deviation of each of the Gaussian mixtures. 

-A supervector Vx is constructed for speaker S by 

concatenating the N-dimensional means resulting in a 

KrepxN dimensional vector. 

-An SVM classifier is trained using the target GMM 

supervectors Vx, as positive examples (labeled as +1)  and 

the SVM background, a set of imposter speaker vectors 

common to all enrollment speakers, as negative examples 

(labeled as -1). 

-The IGMM model and the SVM parameters are stored. 

Given an input speech utterance during the verification 

stage, the first four steps are the same as before. The final 

step is the SVM classification. 

Fig. 1 illustrates the global scheme of speaker verification 

within an infinite GMM scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. A Modular representation of the infinite GMM system 

 

4. EXPERIMENTS 

 

Experiments are performed on the 2006 NIST (SRE) corpus. 

We use a speech feature representation based on a RASTA-

PLP approach. This is an acronym for Relative Spectral 

Transform-Perceptual Linear Prediction. Both of these two 

techniques aim at computing the speech parameters similar 

to the way how a human perceives sounds. 

A 19-dimensional PLP vector is computed from pre-

emphasized speech every 20 ms using Hamming window. 

The first coefficient is then discarded and only 18 

coefficients are kept. Delta cepstral coefficients are obtained 

and appended to the cepstra resulting in a 36 dimensional 

feature vector. An energy-based speech detector is applied 

to discard silence and noise frame. To mitigate the channel 

effects, RASTA and mean-variance normalization are 

applied to the features. 

For the implementation of the SVM stage, we used an 

RBF kernel because it can handle the nonlinearities between 

class labels and attributes. For the two parameters (C,γ.), 

namely the cost (or the penality) parameter and the width of 

the Gaussian function, to be tuned we used the two 

following values: C=10 and γ=0.5 [5] as yielding to good 

results for speech applications. We have used the OSU-

µ=  
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SVM toolbox which is derived from the LIBSVM package 

which can be used within Matlab. All the experiments 

carried out are gender-independent. 

In order to investigate the usefulness of the IGMM over 

the GMM system, comparison is made between the two 

techniques by using respectively the same training and test 

data. 

The evaluation is carried out with a total of 38416 trials 

out of which 20105 trials belong to female speakers and 

18311 trials belong to male speakers. The female subset is 

consisting of 1407 genuine trials and 18698 imposter trials. 

And the male subset is consisting of 1281 genuine trials and 

17030 imposter trials. The two experiments hereafter are 

repeated many times on different subsets of nearly the same 

size. All curves look nearly like those of Fig. 2 and Fig. 3. 

The GMM supervector is computed using MAP adaptation 

with 512 components as we have found that almost the best 

results are obtained for this value, only means are adapted 

[1,11]. The SVM training is performed by implementing 

kernel in (7) and using SVMTorch [12]. 

The SVM background is obtained by extracting 2039 

GMM supervectors, respectively 1025 GMM-supervectors 

for male and 1014 for female from NIST SRE-2006 training 

database. Results can be evaluated through comparison with 

some recent studies like in [11]. Similar results obtained for 

GMM systems participating in the NIST SRE-2006 

evaluation are also available online. 

Coming to infinite GMM, we implement the Gibbs 

sampler as described above upon the same training data used 

for GMM. Unlike the previous GMM approach the number 

of mixtures is not fixed to 512 a priori and is allowed to be 

optimized progressively through the successive iterations. 

The evaluation for both training and test is performed over a 

“core set” as defined by the NIST Evaluation Plan [13]. This 

is a two-channels (4-wire) excerpt from a conversation of 

approximately five minutes total duration from which 10 

seconds of speech are extracted to be used in experiment 2. 

 

4.1. Performance measure 

 

Comparisons of performance are achieved through the 

calculation of the Equal Error Rate (EER) and minimum 

Detection Cost Function (DCF). These measures are derived 

from Detection Error Trade-off (DET) curves.  

The (DCF) Detection Cost Function denoted CDet  is: 

CDet=CMiss* PMiss|Target* PTarget 

+ CFalse Alarm* PFalse Alarm|NonTarget*(1-PTarget)  

     (13). 

With the following values recommended by NIST: 

CMiss =10,  CFalse  Alarm =1 PTarget =0.01 respectively for the 

cost of a miss:, the cost of a false alarm and the a priori 

probability of the specified target speaker probability. Then,  

PNonTarget =(1 − PTarget )=0.99. 

For each test, a detection cost function is computed over the 

sequence of trials provided. Each trial is independently 

judged as “true” or “false” (according to the fact that the 

model speaker speaks in the test segment or not) [13]. 

 

4.2. Experiment 1: Comparing GMM/IGMM 

 
For both GMM-SVM and IGMM-SVM systems, this 

experiment is done on the same NIST-SRE 06, core 

condition, male set (including 680 target tests and 821 

nontarget tests). Table 1 shows the performance of the 

Infinite GMM model versus the finite GMM model. The 

relative gain is about 12% in terms of the Equal Error Rate 

(EER) and about 59% in terms of the minimum detection 

cost Function (min DCF). The corresponding results are 

depicted in Fig. 2. 

 
Table 1.Performance of GMM-SVM system compared with the 

IGMM-SVM system 

System EER (%)° Min DCF (X100) 

GMM-SVM 2.35 2.30 

IGMM-SVM 2.05 0.94 

 

 
Fig. 2. DET curves for GMM-SVM system and IGMM-SVM 

system (experiment 1 conditions) 

 

4.3. Experiment 2: Impact of the training duration 

 

We consider the same data sets as in experiment 1 before. 

Only the training duration is different (respectively 3s, 6s 

and 10s). Table 2 shows the results in terms of EER and 

minDCF and Fig 3 illustrates the corresponding DET 

curves. An improvement in terms of both EER and min DCF 

can be noticed when time increases. This result goes with 

similar studies on the impact of the training data which is 

again expected. 

 
Table 2.Performance of IGMM-SVM according to the training 

duration 

System EER (%)° Min DCF (X100) 

IGMM-SVM-3s 4.82 4.80 

IGMM-SVM-6s 3.55 3.40 

IGMM-SVM-10s 2.05 0.94 



 
Fig. 3. DET curves for IGMM-SVM system versus training 

duration (experiment 2 conditions) 

 

4.4. Number of components 

 

Fig. 4 shows the normalized histogram of the number of 

components during IGMM modeling. This number is, in 

almost cases, well below the advocated value 512. 

 
Fig. 4. Histogram of the components number 

 during IGMM modeling 

  

5. CONCLUSION 

 

The effectiveness of replacing GMM by IGMM with a 

combination to an SVM classification for speaker 

recognition is explored. The inherent advantage of this 

approach is to make it possible to infer the system’s 

complexity from the data without having to make prior 

assumptions about it. 

As mentioned above, the number of the underlying 

components for IGMM modeling is below 512, which 

means that the advocated value for the GMM modeling is an 

overestimation of the system complexity. However, this last 

conclusion should be handled with care and not be 

generalized to situations too different from the present 

context. The model complexity may change e.g. drastically 

if the speech language is different. All we can conclude is 

that with IGMM modeling it seems that only the necessary 

number of components is used which does increase the 

model accuracy. This is well shown by the results which are 

in their majority better than those obtained with the GMM 

approach. 
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