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ABSTRACT

The sampling rate of a radar is often too low to reliably cap-
ture the acceleration of moving targets such as birds. More-
over, the sampling rate depends upon the target’s accelera-
tion and heading and will therefore generally be time vary-
ing. When classifying radar tracks using temporal features,
too low or highly varying sampling rates deteriorates the clas-
sifier’s performance. In this work, we propose to model the
temporal variations of the target’s speed by low-order polyno-
mial regression. Using the polynomial we obtain the condi-
tional statistics of the targets speed at some future time given
its speed at the current time. When used in a classifier based
on Gaussian mixture models and with real radar data, it is
shown that the inclusions of conditional statistics describing
the targets temporal variations, leads to a substantial improve-
ment in the overall classification performance.

Index Terms— Automatic target classification, Machine
learning, Radar, Surveillance

1. INTRODUCTION

The aim of this work is to provide a better overview for a radar
operator and thereby enhanced situation awareness in mission
critical environments. This is done by real–time classification
of radar tracks. A commercial state of the art surveillance
radar provides a huge amount of information and it can there-
fore be difficult for a radar operator to keep up with the infor-
mation, see Fig. 1. Integrated tracking in radars are becoming
standard and in coastal surveillance small targets are of great
importance. Consequently the radar and tracker must be sen-
sitive enough to track these small targets. It will therefore be
likely that unwanted tracks, like birds, will be tracked as well.
Suppression of such tracks requires real–time classification.
Compared to synthetic aperture radar (SAR) a 2D surveil-
lance radar does not have height, Doppler or radar imagery
available in the classification process. Therefore a method
must be developed which uses other attributes like for exam-
ple kinematic and geographic attributes. By exploiting the
temporal development of the kinematic data more informa-
tion can be extracted from the data. Two of the main problems
with using the temporal feature is the low sampling rate for a

Fig. 1. Radar scenario from Egaa Marina in Denmark showing
a rigid inflatable boat (RIB) sailing out and zigzagging back.
A large quantity of bird tracks is observed. A is the RIB, B
and C are unknown vessels, D is an area with a number of sea
buoys, and the rest of the tracks are birds.

radar compared with the typically acceleration of targets like
birds etc. The second problem is that the sampling rate is in-
consistent because of the targets movements and scan period
is different for short and long range profiles in the radar.

There are two main reasons for target classification. The
first is improving situation awareness for a radar operator by
filtering or color coding tracks according to their classes. The
second reason is with the knowledge of the target class the
tracker parameters can be optimized and thereby lead to a
joint classification and tracking approach [1].

An advanced knowledge–based radar tracker [2] converts
the measured backscatter from the radar sweeps into a num-
ber of observation called plots. These plots are then used for
the actual tracking algorithm and the classification algorithms
gets the kinematic information from the tracker.

In the following the term classification is used to describe
the broad identification of a track belonging to a given class
of targets such as ”large ship”, ”bird” etc.

A lot of work has been carried out for classification in
SAR systems ([3] and [4]) but only very little has been done
for 2D surveillance radars [5]. In [6] the authors are using a



tree–based approach with kinematic features from a 3D radar.
In [1], the authors are using joint tracking and classification
where they have multiple tracking algorithms, one for each
target classes and in [7] kinematic and radar cross section
(RCS) are used for joint classification and tracking. In [8]
the authors are using high range resolution (HRR) profiles to
classify ground moving targets.

In this work, we consider the situation where a radar and
its tracker provide information about the target’s speed as
well as the back scatter intensity. We then propose to model
changes in the target’s speed over time by polynomial re-
gression. In particular, a low order polynomial is fitted in a
least squares sense to training data acquired by commercial
radars in realistic scenarios. Based on this model, we provide
a closed-form expression to an approximation of the condi-
tional probability density function (PDF) of the target’s speed
at time t+∆t given its speed at time t. This PDF consists of a
weighted sum between the target’s native PDF and a Gaussian
kernel whose standard deviation characterizes the uncertainty
of the target’s speed. The optimal weight depends upon the
target class and is numerically obtained by solving a maxi-
mum likelihood estimation problem. We then use the naive
Bayesian classifier proposed in [5] for online classification of
real radar data. It is shown that a substantial improvement is
possible when including the statistics of the speed’s temporal
variations. For comparison, we also propose to simply model
these variations by a Gaussian mixture model (GMM) using
the framework of [5]. In this case, the proposed polynomial
modelling of velocity GMM (PMVGMM) based on polyno-
mial regression shows a slight improvement over the purely
GMM based scheme.

2. METHOD

In this section, we first briefly introduce the naive Bayesian
framework proposed in [5], which we will base our classifier
upon. For more details about this framework, we refer the
reader to [5]. Then, we present our main contributions, i.e.,
a model of the conditional probability of a target’s speed (6).
This is given as a weighted sum of the target’s native PDF
i.e. the PDF of the speed and a Gaussian kernel. The Gaus-
sian kernel introduces uncertainty into the model and whose
standard deviation depends upon the time lag and target class.

2.1. Recursive naive Bayesian

The framework is based on [5] where a recursive update al-
gorithm is used. From [5] (1) is the update and smoothing
equation which will prevent the probability for a given class
to reach zero.

Ps(cp|Xn, Xn−1) =
P (cp|Xn, Xn−1) + ε∑Nc

y=1(P (cy|Xn, Xn−1) + ε)
, (1)

where Xn = [Vn, Inr,n, Imti,n,∆t]
T , further ∆t is the time

since last update to the newest update from the radar for a
given track. The radar information is: normal radar intensity
Inr and moving target indication (MTI) intensity Imti. The
information used for kinematic update are: Speed over ground
Vn and temporal dynamic e.g. how the target speed evolve.
Nc is the number of classes. cp is the given class and ε is
some constant Further P (cp|Xn, Xn−1) is define as (2).

The recursive Bayesian update rule can be extended with
more features, using a naive approach by making the assump-
tion that the features are mutually independent.

The probability for a given class will then be provided by

p(cp|Xn, Xn−1) =

P (Xn|cp, Xn−1)P (cp|Xn−1, Xn−2)∑Nc

i=1 P (Xn|ci, Xn−1))P (ci|Xn−1, Xn−2)
,

(2)

and,

P (Xn|cp, Xn−1) = P (Vn|Vn−1,∆t, cp)P (Inr, Imti|cp),
(3)

where P (Vn|Vn−1,∆t, cp) denotes the kinematic PDF i.e. (6)
and P (Inr, Imti|cp) = P (Inr|cp)P (Imti|cp) is the intensity
PDF and they are both modelled as a GMMs. It is assumed
that the radar intensity features are mutually independent.

2.2. The proposed PMVGMM method

The main problem with classifying with a temporal feature is
that the sampling rate is low as compared to moving targets
e.g. between 10 to 40 scans per minute. Secondary is the radar
does not have a constant sampling rate. Therefore a method
must be developed which can handle the slow and varying
sampling rate.

Let us assume that the measurements are noise free. A
measurement of a target’s speed is obtained at time t, which
will give a probability of one for that particular speed (Fig. 2,
blue). After some time, say ∆t, the target may have acceler-
ated or de-accelerated and we are therefore less certain about
its speed. Thus, the PDF of the target’s speed, which was
initially a delta function at time t should reflect the uncer-
tainty in the speed at time t+ ∆t (red and green). Indeed, as
more time passes the less is known about the speed, and the
PDF should tend to the targets native PDF (black). We model
this uncertainty by convolving the probability of Vn (that is a
delta function) with a Gaussian kernel (4). We let the mean
of the kernel be the previous measurement Vn−1, and let the
standard deviation depend upon Vn, Vn−1,∆t. By using the
Gaussian kernel, it is assumed that the acceleration and de-
celeration is equally distributed and therefore no skewness is
present. For example, in the case of the speed feature we pro-
pose the following PDF Pu for modelling the uncertainty:

Pu(Vn|Vn−1,∆t) =

1√
2πσ(Vn, Vn−1,∆t)

exp

(
−(Vn − Vn−1)2

2σ(Vn, Vn−1,∆t)2

)
.

(4)



Fig. 2. A simple example, with synthetic data, K(Xn|Cp) is
the conditional PDF that will be model in the following.

We require that ∆t � 1 implies σ � 1. With this, we there-
fore propose the following formula for the standard deviation:

σ(Vn, Vn−1,∆t) =

∣∣∣∣∣ ∆t

Vn−1 − Vn

∫ Vn

Vn−1

Tacc(v
′)dv′

∣∣∣∣∣ , (5)

where Tacc(v′) is a fit of the acceleration given the speed de-
scribed in section 2.2.1.

The standard deviation σ(Vn, Vn−1,∆t) of the Gaussian
kernel is then the average acceleration from the last measure-
ment to the new measurement given the speed multiplied with
the time since the last measurement. As time increases from
the last measurement the variance will also increase because
less is known about the speed. For ∆t → ∞ one cannot
expect to have much knowledge about the speed except for
the native information given by the speed without temporal
dynamics Pnative(Vn). The transition from Pu to Pnative de-
pends upon the class. We describe this dependency by an
exponential weighting function with time constant C. The
resulting PDF is the weighted sum of Pu and Pnative:

P (Vn|Vn−1,∆t) = exp(−C∆t)Pu(Vn|Vn−1,∆t)

+ (1− exp(−C∆t))Pnative(Vn),
(6)

where

Pnative =

N∑
i=1

πiN (Vn;φi) (7)

and πi is the weighing factor of the ith Gaussian distribu-
tion. The kinematic model (6) must be modelled for each
target class and hence it depends on the given class, that is
P (Vn|Vn−1,∆t, cp).

2.2.1. Finding the Tacc(v′)

The function Tacc from (5) is found from training data based
on real radar measurements, GPS logs, automatic identifi-
cation system (AIS) and automatic dependent surveillance-
broadcast ADS-B data. Since the data are noisy we have

Fig. 3. An example of the polynomial fit using synthetic data

applied fixed interval smoothing [9] in order to reduce the
noise.1 A dataset {(Vn,∆Vn)} which consist of pairs of
speeds and associated accelerations ∆Vn = Vn − Vn−1 are
divided into bins based on the first coordinate, i.e. Vn. Each
bin contains an equal amount of pairs see Fig. 3 for an exam-
ple. From this it is now possible to calculate the acceleration
RMS value for each speed bin.

AccRMS(i) =

√√√√ 1

N

N∑
n=1

∆V 2
n (i), (8)

where i is the speed bin number, N is the number of data
points in each bin and ∆Vn(i) is the nthacceleration in the ith

speed bin. We fit a kth order polynomial Tacc(v′) to the bins
using the center of each bin. The polynomial thus provides
the average acceleration given any speed Vn. See Fig. 3. By
applying the histogram and the RMS the estimate of the fit
will be more immune of outliers. Further we want a continues
function as jumps between the bins can have a negative impact
on the performance of the classification.

In Fig. 4 a subset of the class’s acceleration fit is shown.
It is clearly visible that the large ships do not accelerate much
and the RIBs are a lot more agile than the large ships. A sixth
order fit has been use in the shown fit. In the following the
order are chosen empirically. The order used is a fourth order
fit except the birds class here a eight order fit is used.

2.2.2. Finding the time constant C

The time constant C that is used in the weighting which com-
bines Pu and Pnative can be obtained off-line for each class
by maximizing the following likelihood function:

L(C) =

N∏
n=1

∏
∆t

exp(−C∆t)Pu(Vn|Vn−1,∆t)

+ (1− exp(−C∆t))Pnative(Vn),

(9)

1Due to the filtering the training are less noisy than the test data and we
are therefore able to deduce the target’s acceleration based on the filtered
speed training data. Due to the on-line classification we cannot apply fixed
interval smoothing on the test data in a similar manner



(a) Large ship (b) RIBs

Fig. 4. A sixth order acceleration fit for (a) Large ship (b) RIB

where σ is described in (5).
Fig. 5 shows the amount of information the algorithm uses

from the uncertainty and the native PDF given the time since
last measurement. It is cleat that is more difficult to predict
the RIB as the native information is used quickly compared
to the large ship. This is as expected because a large ship will
normally not change speed as often as RIBs will.

(a) Large ship (b) RIBs

Fig. 5. A plot over the relative weight of the the uncertainty
and the native PDF. The weight is given by exp(−C∆t). (a)
large ship, (b) RIB

3. RESULTS OF EXPERIMENTS

In this section we present the performance of the algorithm.
For comparison the results for RGMM, which do not use tem-
poral information and DeltaGMM which does use temporal
information [5] are also shown. The database is the same
as described in [5] however in the Egaa marina scenario un-
wanted tracks originating from returns associated with static
land features are removed. In table 1 the matrix is shown
for the PMVGMM. In table 2 the confusion matrix from the
RGMM method is shown. This algorithm does not use the
temporal information. In table 3 the DeltaGMM algorihm is
shown. This algorithm exploit the temporal feature by making
a GMM of the entire feature space. The bold font is the best
performing algorithm for that class. The matrices are shown
in percentage. In Fig. 7, 6 and 8 a scenario is shown where a
RIB is sailing out from Egaa marina in Aarhus, Denmark and
zigzagging back. It is clear from both the confusion matrices
and the radar scenario that the PMVGMM algorithm is the

best performing. There is an improvement in the RIB track
and the PMVGMM is keeping the performance for the birds.

Fig. 6. Egaa Marina scenario with colored tracks from the
classification using the PMVGMM method.

Fig. 7. Egaa Marina scenario with colored tracks from the
classification using the RGMM method.

4. DISCUSSION

From Table 2 and 1 the PMVGMM is classifying with an
overall accuracy of 12.9% better than the RGMM method and
1.3% better then DeltaGMM. The large ships and wakes are
classified better with the PMVGMM algorithm. We believe
this is because that the PMVGMM is requiring less training
data then the DeltaGMM and RGMM as large ships are sail-
ing with a constant speed. Therefore a large amount of differ-
ent large ships must then be added to the database to get the
right PDF. Because PMVGMM does not depend as much on
the speed feature and more on the typical acceleration fewer
types of large ships can be used to train the class. For more ag-
ile targets like birds and RIBs it is more difficult to predict the



Fig. 8. Egaa Marina scenario with colored tracks from the
classification using the DeltaGMM method.

Predicted:
Actual: Large ships Birds Wakes RIBs Stationary sea targets
Large ships 85.4 3.9 0.8 9.6 0.2
Birds 16.8 79.0 0.8 0.8 2.7
Wakes 0.0 1.7 97.5 0.0 0.8
RIBs 51.4 2.6 0.4 36.7 8.9
Stationary sea targets 0.0 4.6 0.0 0.0 95.4
Overall performance 78.8

Table 1. PMVGMM confusion matrix

targets movements and therefore RGMM and DeltaGMM are
better at these targets. The radar scenario is shown in Fig. 6,
Fig. 7 and 8. All of the classifiers has difficulty with classi-
fying the RIB. The RGMM and DeltaGMM is classifying a
large part of the RIB track as birds, however the PMVGMM
is only classifying a small part as birds. False negative clas-
sification of e.g. RIBs as birds is not desirable, as this may
cause targets to be removed from the situations display when
applying class filters such as birds. All of the algorithms is
classifying most of the birds correctly.

5. CONCLUSION

In this paper we present an algorithm which uses a polyno-
mial to predict the acceleration given the speed for a target
class. This is combined with a native GMM as time passes
and less is known of the targets speed and position. The re-
sults shows clearly that by exploiting the temporal informa-
tion it is possible to give a better estimate of which target
class a track belongs to i.e. DeltaGMM and PMVGMM is
better then RGMM. Further is shows that by using a polyno-
mial to predict the targets acceleration a slight improvement
of classification can be achieve in comparing with the Delta-
GMM method. In the Egaa scenario the improvement for real
world use is significant.
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