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Abstract—High mobility of terminals constitutes a hot topic
that is commonly envisaged for the next Fifth Generation (5G)
of mobile communication systems. The wireless propagation
channel is a time-frequency variant. This aspect can dramat-
ically damage the waveforms orthogonality that is induced in
the Orthogonal frequency division multiplexing (OFDM) signal.
Consequently, this results in oppressive Inter-Carrier Interfer-
ence (ICI) and Inter-Symbol Interference (ISI), which leads
to performance degradation in OFDM systems. To efficiently
overcome these drawbacks, we developed in [1] an adequate
algorithm that maximizes the received Signal to Interference
plus Noise Ratio (SINR) by optimizing systematically the OFDM
waveforms at the Transmitter (TX) and Receiver (RX) sides.

In this paper, we go further by investigating the performance
evaluation of this algorithm. We start by testing its robustness
against time and frequency synchronization errors. Then, as this
algorithm banks on an iterative approach to find the optimal
waveforms, we study the impact of the waveform initialization
on its convergence. The obtained simulation results confirm the
efficiency of this algorithm and its robustness compared to the
conventional OFDM schemes, which makes it an appropriate
good candidate for 5G systems.

Index Terms—OFDM, Optimazed Waveforms, Inter-Carrier
Interference, Inter-Symbol Interference, SINR

I. INTRODUCTION

The maximization of the overall data rate transmission in

communication systems represents actually the main chal-

lenge and objective of many research works. This objective

generally faces a high interference level that exists in the

received signal and that dramatically disturbs and degrades

its quality. Interesting solutions were proposed in order to

overcome this problem, including the Orthogonal Frequency

Division Multiplexing (OFDM) on which latest cellular

technologies rely on [2]. This modulation offers several

advantages over conventional single carrier approaches such

as an enhanced capacity of the OFDM based system, a

high spectral efficiency for it and immunity to Inter-Symbol

Interference (ISI). In addition to these benefits, equalization

on a narrow band subcarrier is less complex in terms of

processing than other broadband schemes that don’t use the

OFDM transmission [3], [4].

Although the advantages of the OFDM transmission tech-

nique, several research studies shed light on various draw-

backs of this technique, including mainly the spectral leakage

of Digital Fourier Transform (DFT)-based OFDM systems

that can result in an important interference level through the

OFDM subcarriers, awareness to carrier frequency offsets and

also constrained bandwidth efficiency due to the junction of

Cyclic Prefix (CP) used for the channel equalization in the

frequency domain. However, the OFDM approach efficiently

solves the problem of the frequency selective fading channel

by the mean of low-complexity equalizers and this does

represent a crucial aspect in the case of high frequency-

selective channels. Contrary to high mobility situations that

are commonly envisaged for the next Fifth Generation (5G)

of mobile communication systems, the wireless propagation

channel is a time-frequency variant where the time dispersion

emerges from the multipath characteristic and the time-

selectivity arises from the Doppler spread that damages

the orthogonality induced in the OFDM signal and conse-

quently results in oppressive Inter-Carrier Interference (ICI)

[5], [6], [7]. Thus a non-orthogonal future wireless multi-

carrier scheme with malleable waveforms would represent an

interesting solution that potentially reduces the ISI and ICI

and also minimizes the energy spreading. This could also be

a powerful candidate to be used in the 5G systems.

Several solutions were proposed in the literature to mitigate

the ICI and ISI when the propagation channel is doubly

dispersive. One of the envisaged solution is the one proposed

in [5], that banks on waveform based on Hermite-Gaussian

function whose time-frequency density is equal to 2 and

that leads to a better time-frequency localization compared

to the OFDM basic rectangular pulse. This solution reduces

the ICI/ISI levels but at the same time results in a spectral

efficiency reduction and remains more complex from a pro-

cessing point of view than the CP-OFDM scheme. Another

attractive alternative technique is the Lattice-OFDM [9] that

consists in adapting the signal waveforms and the lattice fea-

ture to the propagation channel conditions. Other approaches

to reduce ICI/ISI are based on further equalization treatment

on the receiver side such as the Least-Squares QR (LSQR)

algorithm [10].

In [1], we proposed a novel algorithm to minimize the ICI

and ISI through an adequate design of the OFDM waveforms.

This algorithm has the advantage to remain powerful even the

waveform orthogonality is destroyed.



In this paper, we evaluate numerically the robustness of

our algorithm [1]. First, we study its sensibility to waves

initializations. Second, we characterize its efficiency against

synchronization errors.

This paper is organized as follows: in Section III, we will

present the multicarrier system model where we specify its

transmitter and receiver blocks. We also detail the propa-

gation channel models that will be used in this paper. In

Section IV, we will describe the optimization technique for

waveform design. In Section V, we will study the algorithm

sensibility to waves initializations. Section VI will evaluate

the robustness of our algorithm against to time and frequency

synchronisation errors. Finally, Section VII will draw conclu-

sions and perspectives of our work .

II. NOTATIONS

The boldface lower case letters denote vectors and boldface

upper case letters refer to matrices. The superscripts .T and

.∗, denote the transpose and the element-wise conjugation,

respectively. In addition, E and � refer to the expectation

operator and the component-wise product of two vectors or

matrices, respectively. I denotes the identity matrix with ones

in the main diagonal and zeros elsewhere.

III. SYSTEM MODEL

This section provides preliminary concepts and notations

related to the considered multicarrier scheme and the channel

assumptions and model. Starting from the symbols, lat-

tices, and waveform inspired from the framework of Weyl-

Heisenberg, frames are discussed through this section. Fur-

thermore, we consider their discrete time version in order to

simplify the theoretical derivations that will be investigated.

A. OFDM Transmitter and receiver blocks

We denote by T the OFDM symbol duration and by F the

frequency separation between two adjacent subcarriers. Let

am,n, m,n ∈ Z, be the transmitted symbol at time nT using

subcarrier mF and assumed to be independent identically

distributed (i.i.d.) with zero mean and energy equal to E.

The baseband transmitted signal is given by the following

expression:

e(t) =
∑

m,n

amnϕmn(t),

where ϕmn(t) = ϕ(t − nT )ej2πmFt denotes the time and

frequency shifted version of the OFDM transmitter prototype

waveform ϕ(t) used to transmit the symbol amn and that is

assumed to have a unitary energy, means ‖ϕ(t)‖ = 1.

The transmitted signal is sampled at a sampling rate R =
1
Ts

, where Ts =
T
N

is the sampling period such that N ∈ N,
1

TsF
= Q ∈ N and N > Q. Let Q denotes the number of

the OFDM signal sub-carriers. The sub-carrier frequencies

correspond to mF = m
QTs

, where m = 0, 1, . . . , Q− 1. Note

that the parameter (N−Q)Ts can be confused with the notion

of Cyclic Prefix (CP) in a conventional OFDM system and

the time-frequency plane density refers to δ = 1
FT

= N
Q

.

Let the infinite vector e =
[. . . , e−2, e−1, e0, e1, e2, . . .]

T = (eq)q where eq , also

denoted [e]q, be the sampled version of the transmitted

signal at time qTs with q ∈ Z such that e =
∑

m,n amnϕmn.

We denote by ϕmn = (ϕq−nN )q�(ej2π
mq

Q )q the vector

that results from a time shift of nNTs = nT and

a frequency shift of mF = m
QTs

of the transmission

prototype vector ϕ = (ϕq)q . The waveform unitary energy

assumption is also maintained in the discrete version, i.e.,

‖ϕ‖2 =
∑

q∈Z
|ϕq|

2 = 1.

Assuming a linear time-varying multipath channel h(p, q)
with q and p standing respectively for the normalized obser-

vation time and the time delay, the received signal has the

following expression:

rq =
∑

m,n

amn

∑

p

h(p, q)[ϕmn]q−p + nq

=
∑

m,n

amn[ϕ̃mn]q−p + nq,

where p denotes the channel taps, [ϕ̃mn]q =
∑

p h(p, q)[ϕmn]q is the channel distorted version of

ϕmn and n = (nq)q denotes the discrete complex Additive

White Gaussian Noise (AWGN), the samples of which

are centered, uncorrelated with common variance N0. The

decision variable

Λkl = 〈Ψkl, r〉 = ΨH
klr (1)

on the transmitted symbol amn is obtained by projecting the

received signal r on the receiver pulse Ψkl, where Ψkl =

(Ψq−lN )q�(ej2π
kq

Q )q is the time and frequency shift version

of the received vector dedicated to demodulate amn. Perfect

demodulation is achieved since the transmitter waveform and

the receiver one are bi-orthogonal. Note that this condition

could not be perfectly satisfied and we will consider a general

framework for it in this paper.

B. Channel model

For simplification sake, assume that the Linear Time

Variant (LTV) channel h(p, q) is Wide-Sense Stationary with

Uncorrelated Scattering (WSSUS). Then, the channel discrete

scattering function has the following expression:

S(p, ν) =
∑

∆q

φh(p,∆q)e−j2πνTs∆q,

where φh(p1, p2; ∆q) = E[h∗(p1, q)h(p2, q + ∆q)] =
φh(p1,∆q)δK(p2 − p1) defines the corresponding autocor-

relation function with δK being the Kronecker symbol.

To simplify the derivations, we presume a channel with a

finite path number, K, with the following channel impulse

response:

h(p, q) =

K−1
∑

k=0

hke
j2πνkTsqδK(p− pk),



where hk, νk and pk are respectively the amplitude, Doppler

frequency and the time delay of the kth path. The paths

amplitudes hk are assumed to be i.i.d. complex Gaussian

variables with zero mean and average powers equal to

πk = E[|hk|
2] such that

∑K−1
k=0 πk = 1. We choose an

exponential truncated decaying model. Let 0 < b < 1 be the

decaying factor, such that the paths powers can be expressed

as πk = 1−b
1−bK

bk.

In this paper, we consider a radio mobile channel where the

scattering function S(p, ν) has periodical classical Doppler

spectral density α(ν), with period 1
Ts

. This scattering func-

tion obeys to the Jakes model that is decoupled from the

dispersion in the time domain denoted β(p). This means that

S(p, ν) = β(p)α(ν), such that β(p) =
∑K−1

k=0 πkδK(p− pl)
and

α(ν) =







1
πBd

1
√

1−( 2ν
Bd

)2
if |ν| < Bd

2

0 if Bd

2 ≤ |ν| ≤ 1
2Ts

(2)

where Bd is the Doppler speard and
∫

α(ν)ej2π
ν
Ts

k dν =
J0(πBdTsk).

IV. WAVEFORMS DESIGN

Without loss of generality, we will focus on the evaluation

of the SINR for the symbol a00. Referring to (1), the decision

variable on a00 has the following expression:

Λ00 = a00 〈Ψ00, ϕ̃〉+
∑

(m,n) 6=(0,0)

amn 〈Ψ00, ϕ̃mn〉+〈Ψ00,n〉 .

This decision variable is the sum of three elements: a useful

element, an interference one and a noise one. The purpose of

our optimization approach is to minimize the mean power of

the interference element, resulting from symbols amn such

that (m,n) 6= (0, 0), for a fixed value of the useful element

power.

A. Average Useful Power

The useful term corresponding to a00 is given by U00 =
a00 〈Ψ00, ϕ̃00〉. For a given realization of the channel, the

average power of the useful terms is given by Ph
S =

E| 〈Ψ00, ϕ̃00〉 |
2. Therefore, the average of the conditional

useful power over channel realizations is PS = E[Ph
S ]h,

where [ϕ̃00]q =
∑K−1

k=0 hk[ϕ̃00]q−pk
ej2πνkTs(q−pk). Let

σp(v) denote the time shift operator by p sample durations of

the vector v = (νq)q , i.e. σp(v) = (νq−pk
)q and Φν denote

the Hermitian matrix with (p, q)th entry ej2πνTs(p−q). Under

these notions, we deduce that:

PS = EΨH
KS

ϕ

S(p,ν)Ψ,

where we define the useful signal Kernel matrix as

KS
ϕ

S(p,ν) =
∑K−1

k=0 πkΦνk
� (σpk

(ϕ00)σpk
(ϕ00)

H). Since

PS is a positive entity, then the Kernel matrix is a positive

Hermitian matrix. Hence, given any choice of the transmitter

prototype ϕ, one can maximize the useful signal power by

choosing the receiver prototype vector Ψ as the eigenvector

of the KS
ϕ

S(p,ν) that corresponds to its maximum eigenvalue.

B. Average Interference Power

The interference term within the decision variable Λ00 is

given by I00 =
∑

(m,n) 6=(0,0) amn 〈Ψ00, ϕ̃mn〉 that results

from the contribution of amn such that (m,n) 6= (0, 0). The

mean power of Ph
I over channel realizations is given by

PI = E[Ph
I ]h = E

∑

(m,n) 6=(0,0)

E[| 〈Ψ00, ϕ̃mn〉 |
2]h.

By re-iterating the same derivation as the one in Section IV-

A, we find that:

PI = EΨH
KI

ϕ

S(p,ν)Ψ.

where the interference Kernel matrix is ex-

pressed as KI
ϕ

S(p,ν) =
∑K−1

k=0 πkΦνk
�

(
∑

(m,n) 6=(0,0) σpk
(ϕmn)σpk

(ϕmn)
H). Since PI is always

positive, then KI
ϕ

S(p,ν) is also a positive semidefinite matrix.

We deduce that for any choice of the transmitter prototype

vector ϕ, one can minimize the interference power by

choosing the receiver prototype vector Ψ as the eigenvector

of KI
ϕ

S(p,ν) that corresponds to its smallest eigenvalue.

C. Average noise power

The noise average power is given by:

PN = E[| 〈Ψ00, n〉 |
2] (3)

= ΨH
00E[nn

H ]ΨH
00. (4)

Since the noise is assumed to be white, therefore its co-

variance matrix is equal to Rnn = E[nnH ] = N0I.

Consequently, as the prototypes are of unitary energy, then

PN = N0.

D. Optimization step

Using the obtained expressions of the useful power PS , the

interference power PI and the noise power N0, the SINR has

the following expression:

SINR =
PS

PI + PN

=
ΨH

KS
ϕ

S(p,ν)Ψ

ΨHKI
ϕ

S(p,ν)Ψ+ N0

E

. (5)

This expression is valid for normalized transmitted energy

and Tx/Rx prototype functions ϕ and Ψ.

Our main objective consists in determining the couple

(ϕ,Ψ) that maximizes the SINR for a given SNR value.

A direct optimization method consists in diagonlizing the

SINR denominator of expression (5) and then perform a

basis change that will simplify the expression of this de-

nominator, so that our optimization problem becomes a

maximization one that implies to find the eigenvector of the

SINR numerator that corrresponds to its maximum eigen-

value. More precisely, we first introduce the Kernel function

KIN
ϕ
S(p, ν) = KI

ϕ
S(p, ν)+ (N0

E
)I. The eigendecomposition



of KIN
ϕ
S(p, ν) is KIN

ϕ
S(p, ν) = UΛUH , where U is a

unitary matrix, Λ is a diagonal one with nonnegative real

numbers on the diagonal. Then, the SINR denominator can be

written as ΨH
KIN

ϕ
S(p, ν)Ψ = ΨH

UΛUHΨ = u
H
u where

u = Λ
1

2U
HΨ. Since KI

ϕ
S(p, ν) is a positive semidefinite

matrix, then all the entries of Λ are positive and greater than
N0

E
> 0. Therefore, Ψ = UΛ− 1

2u and the SINR expression

becomes the following:

SINR =
u
HΦu

uHu
,

where Φ = Λ− 1

2U
H
KS

ϕ
S(p, ν)UΛ− 1

2 is a positive matrix.

Hence, maximizing the SINR is equivalent to determine the

maximum eigenvalue of Φ and its associated eigenvector u0.

Therefore, Ψopt = UΛ− 1

2u0.

V. SENSITIVITY TO WAVEFORMS INITIALIZATIONS

In this section, we study the performance of our algorithm

in terms of SINR for different waveforms initializations. We

consider Gaussian waveforms where we vary the mean and

the standard variation as illustrated in Fig.1. Then, for each

Gaussian waveform, we apply our optimization algorithm

(See Section IV-D) and we represent the SINR evolution that

is depicted in Fig.2. From this figure, we can conclude that

whatever the waveform initialization that we consider, our

algorithm converges to the same SINR. This highlights that

our algorithm isn’t sensitive to the used initialization.
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Fig. 1: Gaussian Waveforms initializations

VI. ROBUSTNESS

As it is known, the synchronization is a crucial indicator

for efficiency of wireless communication systems and

eventually for 5G [6], [7]. Usually, such systems are too

sensitive to any synchronization error. As our algorithm

was essentially conceived for non-orthogonal future wireless

multi-carrier, it is worth meaning to evaluate its vulnerability

against time and frequency synchronization errors.
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Fig. 2: Optimized SINR as a function of waves initializations

( CP = 32, SNR = 30dB, BdTm = 10−2 and waveform

support duration equal to 3T ).

In this section, we investigate this aspect and then we

focus on the sensitivity of the optimized waveforms for any

variation around the optimal BdTm where Tm and Bd are

respectively the delay and Doppler spreads.

In Fig.3, we can conclude that our proposed algorithm

significantly outperforms the conventional OFDM one

in terms of robustness against the time synchronization

errors when CP = 32 and CP = 16. For the frequency

synchronization errors, the obtained results show that our

algorithm doesn’t degrade the SINR performance compared

to the conventional OFDM one (See Fig.4).
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Fig. 3: Optimized SINR as a function of time Synchroniza-

tion errors (∆t)(SNR=30dB, BdTm = 10−2 and waveform

support duration equal to 3T ).



−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
12

13

14

15

16

17

18

19

20

D n

S
IN

R
 [
d
B

]

 

 

Proposed

Conventional

Fig. 4: Optimized SINR as a function of frequency synchro-

nization errors (∆ν)(CP=32, SNR=30dB,BdTm = 10−2 and

waveform support duration equal to 3T ).

Fig.5 illustrates the sensitivity of our algorithm when

we assume a synchronization error on BdTm ranging

between 0.001 and 0.01. In this figure, we represent

the SINR obtained after optimizing the waveforms when

BdTm1 = 0.001 and BdTm2 = 0.01, respectively. We

remark that the obtained SINR performance for BdTm2

is slightly degraded compared to the situation where the

optimization is performed for BdTm1. Therefore, it is better

to consider our waveforms optimization for large BdTm

values when we do not know in advance its optimal value.
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Fig. 5: Optimized SINR as a function of BdTm (CP = 32,

SNR = 30dB, and waveform support duration equal to 3T ).

VII. CONCLUSION

In this paper, we evaluate numerically the performance of

our proposed waveforms optimization algorithm in terms of

robustness to time and frequency synchronization errors. We

also studied its sensitivity to waveforms initializations. The

obtained results showed the good performance of our wave-

forms optimization algorithm even in cases where the OFDM

waveforms orthogonality was not respected (this situation is

often in high mobility propagation channels). This includes

good robustness against time and frequency synchronization

errors and insensitivity to waveforms initializations.

This confirms well that our proposed solutions can be con-

sidered an attractive candidate to 5G systems. A possible

challenging research axis that could be investigated consists

in extending our optimization algorithm to the case of

OQAM/OFDM systems.
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