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ABSTRACT

For many languages, an expert-defined phonetic lexicon may
not exist. One popular alternative is the use of a grapheme-
based lexicon. However, there may be a significant differ-
ence between the orthography and the pronunciation of the
language. In our previous work, we proposed a statistical
machine translation based approach to improving grapheme-
based pronunciations. Without knowledge of true target pro-
nunciations, a phrase table was created where each individ-
ual rule improved the likelihood of the training data when
applied. The approach improved recognition accuracy, but
required significant computational cost. In this work, we pro-
pose an improvement that increases the speed of the process
by more than 80 times without decreasing recognition accu-
racy.

Index Terms— automatic speech recognition, grapheme-
based speech recognition, pronunciation learning

1. INTRODUCTION

Not all languages have the benefit of hand-crafted, highly
accurate lexicons. Even hand-crafted lexicons may have
inconsistencies, errors, or missing words. A common ap-
proach to handling a language without a predefined lexicon is
through the use of graphemes. Graphemes provide a simple
one-to-one mapping between words and a pronunciation—
at least for the pronunciation dictionary used by the ASR
system, though it does not necessarily correspond to the
phonetics of the language. Depending on the relationship be-
tween the orthography and the phonetics of a given language,
the graphemic representation can provide comparable per-
formance to a phonetic-based lexicon [1]. Recent work has
shown that the gap between phonetic and graphemic systems
can be closed further by increasing the amount of training
data [2].

Alternative or additional pronunciations for words can be
learned directly from the data [3, 4]. Given a pre-existing
acoustic model, pronunciation variants are generated by de-
coding the original training data. Several issues exist sur-
rounding this approach. Only words that have been seen dur-
ing training are affected; unseen words will keep their canoni-

cal pronunciations, possibly increasing the mismatch between
the training and testing data. The new pronunciations can
also increase the confusability of the lexicon by increasing
the number of homonyms, significantly impacting recogni-
tion accuracy [5].

Many approaches exist to improve grapheme-based lexi-
cons by converting the pronunciations to a different acoustic
unit set, typically phones. Some of the first approaches used
hand-derived rules to perform the conversion [6]. More recent
approaches automatically learn a mapping from graphemes to
phonemes [7] from a set of training data. This removes the ne-
cessity of using expert knowledge. In all cases the approaches
are able to generalize to unseen words. While recent work has
been done to reduce the amount of training data required [8],
these approaches require at least some amount of training data
to exist—training data that does not exist for our task.

An alternative to modifying the pronunciation lexicon is
to capture the variations in a confusion model [9]. During
decoding the confusion network expands the search space to
implicitly allow for more pronunciation variation in the lexi-
con. This approach is best suited for capturing variation in an
already well-defined lexicon. If the original pronunciation for
a word is poor, it will still negatively affect the system. Also,
the confusion model is only used during decoding; knowl-
edge of potential confusions does not alter the training of the
original acoustic models.

In this work, we focus on improving a pre-existing lex-
icon. Since no training data and no pre-defined target pro-
nunciations exist, we require an alternative approach to trans-
forming the pronunciations. In a prior study, we proposed
a method for automatically discovering acoustic units and
creating a pronunciation dictionary from an initial grapheme-
based system [10]. The method for creating the pronunciation
lexicon worked by transforming a baseline dictionary using
a statistical machine translation (SMT)-based approach. The
crucial component was the scoring of the individual rules
used in the phrase table. Our proposed approach was compu-
tationally expensive and would be difficult to apply to larger
datasets. In this work, we propose an improvement that al-
lows the scoring to be performed more than 80 times faster
than the previously proposed approach. Instead of scoring
each rule individually, the entire phrase table is evaluated



jointly.
In Section 2 we describe both the previous approach to

rule scoring and the more efficient approach proposed in this
work. Section 3 describes the the experimental setup. Results
in terms of both word error rate and computational cost are
presented in Section 4. Conclusions are presented in Section
5.

2. PRONUNCIATION TRANSFORMATION

Our general approach to pronunciation transformation is iden-
tical to the one proposed in [10], only the rule scoring method
is altered. In other work, this is referred to as grapheme-to-
phoneme (G2P) conversion [11, 12]. Since we are translating
from graphemes to graphemes—or more generally, between
two identical symbol sets—we refer to it as grapheme-to-
grapheme (G2G) conversion. As in our previous work, we use
a SMT-based approach. An SMT-based G2G system consists
of a set of rules—referred to as a phrase table—that translate
a sequence of symbols into an alternate sequence of symbols;
in our study, the symbols represent acoustic units.

In order to create the phrase table, a set of training data
is required. We build the training data by decoding the
acoustic training data with context-independent (CI) acous-
tic units. Since the CI acoustic units have far fewer models
than context-dependent (CD) units, we use 128 mixtures for
each GMM. As noted in prior work, CD models produce
more consistent pronunciations [13], but our goal at this stage
is to produce as many reasonable pronunciation hypotheses
as possible. This process generates a set of pronunciation
hypotheses for each word in the lexicon.

Given the pronunciation hypotheses, the phrase table is
created. If the phrase table was used to directly transform the
original lexicon, it would significantly decrease the perfor-
mance of the resulting ASR system. In many cases, a held out
set of training data is used to further tune the parameters of the
SMT system [14]. Unfortunately, true target pronunciations
do not exist, so we cannot tune the parameters in this man-
ner. In fact, we have experimented with approaches to tuning
the SMT system such that the transformed lexicon minimizes
the WER when using previously trained models. We have
found that simply learning the optimal weights in this manner
still does not improve overall performance. This is likely due
to the amount of noise in the original training set. Our ini-
tial training step introduces a large number of rules that nega-
tively affect performance. Tuning weights associated with the
rule scores provided by Moses is not sufficient to reduce their
effect.

Instead, we select the subset of rules in the phrase table
that will result in an improved lexicon. The previously pro-
posed procedure is described in Section 2.1, while the more
efficient approach proposed in this work is described in Sec-
tion 2.2. Once the individual rules have been scored, the orig-
inal phrase table is pruned to contain only rules that surpass

a certain threshold. The pruned phrase table is used to trans-
form the original pronunciations into an improved lexicon.

2.1. Isolated Rule Scoring

This approach focuses on selecting rules that improve the
overall likelihood of the training data. The procedure is
outlined in Algorithm 1. Each rule in the phrase table is
scored individually. Given the log-likelihood of the train-
ing data using the original lexicon, the average change to
the log-likelihood is computed by applying each rule. This
average change in log-likelihood becomes the score for the
rule. Depending on the size of the training set, the number of
utterances that need to be examined for each rule can be quite
large. We artificially limit the number of utterances for each
rule to 100 to reduce the computational cost.

Algorithm 1 Isolated Rule Scoring Procedure [10]
Input: set of training utterances T , unscored phrase table P ,

default lexicon L.
For each rule pi ∈ P .

Let L′ be the transformed lexicon after applying rule p
to L.
Let T ′ be the set of utterances in T containing an al-
tered word in L′.
For each tj ∈ T ′

sj = sj + log-likelihood change in tj .
sj = sj / size(T ′).

Output: set of scores S for rules in P .

2.2. Single Pass Scoring

The previously described procedure is required to examine
a subset of the training data for each rule in the phrase ta-
ble. We propose a more efficient approach that only requires
a single pass through the entire training set. The algorithm
is presented in Algorithm 2. As opposed to focusing on the
likelihood of the training data, we find the rules that are most
frequently used when force aligning the data. A new lexicon
is only computed once, containing all possible pronunciations
of each word based on the rules in the phrase table. Each
training utterance is aligned to find the best pronunciation for
each word for that utterance. The score for each rule becomes
the ratio of the number of times a rule produced a pronunci-
ation used during forced alignment and the number of times
a rule could have been selected. Another possible advantage
of not scoring the rules independently is that the score is par-
tially dependent on the interaction between rules.

While similar to simply selecting the most frequent pro-
nunciation for each word, there are several important distinc-
tions. Many words in the training lexicon are only seen a
small number of times, with no single pronunciation being
seen more frequently than any other—obviously the issue is



even worse for words not seen during training. By instead
focusing on frequent translations of graphemes, the approach
can generalize to unseen words. Also, while one pronuncia-
tion of a word may not dominate, a portion of its pronuncia-
tion might.

Algorithm 2 Single Pass Scoring Procedure
Input: set of training utterances T , unscored phrase table P ,

default lexicon L.
Let A and B be two count vectors of equal size to P .
Let L′ be the lexicon containing all possible pronunciations
for each word after applying P to L.
For each tj in T

Let D ⊆ L′ contain all words in tj .
Let W ⊆ D contain all pronunciations used in the
forced alignment of tj .
If pi ∈ P was used to produce a pronunciation in W ,
increment ai ∈ A.
If pi ∈ P was used to produce a pronunciation in D,
increment bi ∈ B.

For each pi ∈ P , Let si ∈ S = ai / bi
Output: set of scores S for rules in P .

3. EXPERIMENTAL SETUP

All speech recognition systems are built and tested using the
HMM toolkit (HTK) [15]. The acoustic model uses cross-
word triphones; each triphone has three states, modeled by
a mixture of 16 Gaussians per state. Transition probabilities
are tied across all models with the same center unit. Indi-
vidual states are clustered across models, resulting in approx-
imately 2000 tied states. State clustering is typically based
on questions relating to phonetic classes. We do not assume
this information is available for the acoustic units evaluated in
this study. Instead, we use singleton questions (one question
per acoustic unit) as is used in other work [1]. Decoding is
performed with a bigram language model.

In addition to grapheme-based acoustic units, we also
explore the use of automatically discovered acoustic units.
We use the same unit discovery procedure as described in
[10]. Three-state context-dependent grapheme models are
clustered using spectral clustering [16] to generate the new
acoustic units. Since each context dependent grapheme can
be directly mapped to a single acoustic unit, an initial lexicon
can be derived through this mapping.

To perform the pronunciation transformation, we use the
Moses toolkit [17]. For each acoustic unit type, a phrase table
is trained on approximately 70,000 word and hypothesized
pronunciation pairs. The initial phrase table contains 500k
rules, and it is too large to score using the previously proposed
approach described in Section 2.1. We reduce the number of
rules by pruning rules that were rarely seen in training, re-
sulting in approximately 25k rules. This pruning is also done

for the new approach for fair comparison. Once the rules are
scored using one of the methods from Section 2, the phrase
table is further pruned to only keep rules that pass a certain
threshold. The original pronunciations are finally transformed
by applying the reduced phrase table.

Evaluations are performed on the WSJ0 corpus, an En-
glish language 5000-word closed vocabulary task. The train-
ing set consists of 7,138 utterances from 83 speakers for a
total of 14 hours of speech. The test set consists of 330 utter-
ances from 8 speakers not seen during training. All settings
were tuned using the development set. In this work, English
was chosen because it allows for a comparison against using
a hand-crafted dictionary and it has complex letter-to-sound
rules [1].

4. RESULTS

WER results are presented in Table 1. A grapheme-based sys-
tem performs significantly worse on this dataset compared to
a similarly trained phone-based system (WER 8.0%). The
first column contains the type of acoustic unit and the second
column lists the number of acoustic units. The discovered
units are the units built by clustering the original grapheme-
based models, as described in [10]. Each result column de-
scribes the type of pronunciation dictionary used. Baseline
pronunciations are the default lexicons without any type of
transformation applied. Isolated Rule applies the SMT-based
pronunciation transformation procedure using a phrase table
scored by the procedure described in Section 2.1. Single Pass
uses the the more efficient scoring procedure proposed in Sec-
tion 2.2. We also experimented with larger numbers of acous-
tic units, but it did not produce further gains.

The Single Pass scoring procedure produces similar re-
sults to Isolated Rule, but is approximately 80 times faster.
While the WER improvements produced by Single Pass over
Isolated Rule are not statistically significant, the improve-
ment between the baseline grapheme-based system and the
best performing transformed system is increased from 13%
relative WER to 16%. In addition, the difference between the
baseline lexicon and the Single Pass lexicon in each row are
statistically significant (p ≤ 0.05).

The main contribution of Single Pass over Isolated Rule is
the dramatic reduction in the time required to score the rules.
Figure 1 compares the running time of the two methods on a
single 2.0 GHz processor. Note that the y-axis—computation
time in minutes—is a logarithmic scale. The difference be-
tween the two scoring methods is so large that it would be
difficult to see on a linear scale. Isolated Rule takes approx-
imately 30 seconds per rule and the running time is linear in
the number of rules. Single Pass has a significantly reduced
running time, growing very slowly in terms of the number of
rules. The increased cost for each additional rule is negligible.
The difference in time between the two methods when scor-
ing the full phrase table is nearly two orders of magnitude.



Unit Type # Acoustic Units Baseline Isolated Rule Single Pass
Grapheme 26 15.8 14.5 14.2
Discovered 39 15.0 13.9 13.3
Discovered 50 15.2 13.9 14.1
Discovered 60 14.4 13.8 13.2

Table 1. Results for both grapheme-based acoustic units and automatically discovered acoustic units (Section 3) in terms of
WER (%). Baseline are the original pronunciations while the final two columns use the transformed lexicons. Isolated Rule is
the previously proposed approach described in Section 2.1 and Single Pass is the improved approach described in Section 2.2.

Note that both approaches are easily parallelizable.
Single Pass has a minimum computational cost, the time

required to force align the training set, regardless of the num-
ber of rules in the phrase table. As the size of the phrase table
increases, the time to generate all possible pronunciations also
increases. Since this computation is only performed once for
the entire dataset, the overall cost is small. A secondary ef-
fect is the number of pronunciations for each word increases,
slightly increasing the time required to force align each sen-
tence. However, the majority of the additional cost comes
from determining the rules associated with each pronuncia-
tion. By precomputing these associations, especially for fre-
quent words, the computational cost could be further reduced.
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Fig. 1. Number of minutes required for computation versus
the number of rules scored for the two methods described in
Section 2. Note that the y-axis is on a logarithmic scale. Sin-
gle Pass is nearly two orders of magnitude faster than Isolated
Rule.

5. CONCLUSIONS

We have presented a method for improving a grapheme-based
lexicon by transforming the original pronunciations using a
SMT-based approach. Since target pronunciations are not
known, the approach relies on pruning the rules in the phrase

table as opposed to the typical approach of tuning weights.
The general approach was previously proposed in [10], but
due to the computational cost, was unlikely to scale to larger
datasets. In this work, we presented an alternative scoring
method that is more than 80 times faster than the previously
proposed method, while obtaining a small improvement in
recognition performance. The relative WER improvement
with the new method is 16% (compared to 13% with the
previous method). With the reduced computational cost, it
is now feasible to perform experiments on larger datasets.
We have begun experiments on several under-resourced lan-
guages (Tagalog, Turkish, and Pashto) from the IARPA Babel
project. We will explore how the results are affected by the
amount of correlation between the orthography and phonetics
of a language.
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