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ABSTRACT
This paper investigates the effectiveness of prediction-error
expansion reversible watermarking on textured images. Five
well performing reversible watermarking schemes are con-
sidered, namely the schemes based on the rhombus average,
the adaptive rhombus predictor, the full context predictor as a
weighted average between the rhombus and the four diagonal
neighbors, the global least-squares predictor and its recently
proposed local counterpart. The textured images are analyzed
and the optimal prediction scheme for each texture type is
determined. The local least-squares prediction based scheme
provides the best overall results.

Index Terms— reversible watermarking, textures, adap-
tive prediction, least square predictors

1. INTRODUCTION

For classical watermarking, the images with high content of
textures provide more capacity for data hiding than the one
without textures. This is due to the fact that the human visual
system is less sensitive to degradation in textured areas and
thus one can embed more in textured than in uniform areas
(see [1], etc.). For reversible watermarking, this is not true:
one can embed more data in uniform than in textured areas.
This can be easily explained by the fact that the reversible
watermarking schemes are based on pixel correlation, and the
correlation in textured areas is lower than in uniform areas.

We remind that reversible watermarking not only de-
mands imperceptible embedding of data, but also the recov-
ery of the original host without any errors. The algorithms
providing the highest embedding bit-rates are the so called
difference expansion reversible watermarking [2, 3], etc. Dif-
ference expansion creates room for data embedding into the
least significant bit (LSB) of a certain pixel based difference,
usually into the prediction error. More precisely, pixels are
modified such that, the prediction error at detection be two
times larger. The multiplication by two sets to zero the LSB
and leaves room for a bit of data. Obviously, the distortion
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introduced by embedding one bit into a pixel is directly con-
nected to the difference to be expanded. Otherwise stated, for
prediction error expansion schemes, the performance depends
on the prediction.

While the results of reversible watermarking are usually
provided for images with different statistics, no analysis has
been dedicated to textures. It should be noticed that a high
content of texture exists in remote sensing images, medical
images, etc.

This paper investigates the effectiveness of reversible
watermarking for textured images. We focus on the perfor-
mances of prediction error expansion reversible watermark-
ing schemes. Five schemes are considered, namely the one
based on the average on the rhombus context [5], the context
adaptive rhombus of [6], the full context of [7], the global
least-squares predictor and the local predictor very recently
proposed in [8]. The global and local prediction schemes are
using the rhombus context as well. In fact, it should be no-
ticed that most of the recently proposed schemes are using the
rhombus context (see [6]- [12]). The results are evaluated on
the well-known Brodatz album. The outline of the paper is as
follows. The basic principle of the reversible watermarking
based on prediction error expansion and the particularities
of the selected schemes are briefly presented in Section 2.
Experimental results are provided in Section 3. In Section 4,
the conclusions are drawn.

2. PREDICTION ERROR EXPANSION SCHEMES

The basic principle of prediction error expansion reversible
watermarking is first introduced. Then, the selected schemes
are briefly discussed.

2.1. Basic Principle

An integer threhold (T ) is defined in order to control the dis-
tortion and implicitly, the embedding bit-rate of the water-
marking scheme. For each pixel, the prediction error is com-
puted,

ei,j = xi,j − x̂i,j (1)

where x̂i,j is the predicted value of xi,j . The pixels with
−T ≤ ei,j < T are used for embedding a bit of data (bi,j),



while the others are shifted in order to provide, at detection, a
prediction error greater than the embedded pixels. Thus, one
has:

x′i,j =


xi,j + ei,j + bi,j if −T ≤ ei,j < T ,
xi,j + T if ei,j ≥ T ,
xi,j − T + 1 if ei,j < −T .

(2)

Both the embedding and the shifting are possible if no over-
flow or underflow is generated, i.e., 0 ≤ x′i,j ≤ 255.

The performance of the prediction error expansion re-
versible watermarking depends on the prediction scheme.
Next, we briefly present the five schemes considered in this
paper.

2.2. Rhombus average

The use of the average on the rhombus context for predic-
tion in reversible watermarking was introduced in [5]. This
scheme starts by splitting the image into two sets, diagonally
connected (like the black and white squares of a chessboard):
the cross set and the dot set. The embedding starts with the
pixels from the cross set and continues with the dot set only
after all the pixels from the cross set were processed. The
predicted value is computed as :

x̂i,j =

⌊
xi−1,j + xi+1,j + xi,j−1 + xi,j+1

4

⌋
(3)

The pixels of the cross set are predicted by using only
original pixels, i.e., the ones of the dot set. On the other
hand, the pixels in the dot set are predicted by using modi-
fied pixels. This two-stages scheme appears to slightly out-
perform the simple raster scan watermarking where pixels are
predicted by using two original and two modified pixels into
the prediction context.

The two-stages approach allows a very fine control of the
embedding bit-rate. More precisely, the pixels of each set are
ordered according to the variance of their context:

µi,j =
1

4

4∑
k=1

(∆νk −∆ν̄)2 (4)

where ∆ν1 = |xi,j−1 − xi−1,j |, ∆ν2 = |xi−1,j − xi,j+1|,
∆ν3 = |xi,j+1 − xi+1,j |, ∆ν4 = |xi+1,j − xi,j−1| and
∆ν̄ = (∆ν1 + ∆ν2 + ∆ν3 + ∆ν4)/4. Only the first n pixels
with the smallest variance values from each set are considered
for embedding, the remaining pixels are left unchanged. Not
only very fine control of the embedding capacity is ensured,
but also the number of shifted pixels is reduced [5].

2.3. Adaptive rhombus

The context adaptive rhombus of [6] selects one of three sub-
predictors based on the local gradients (horizontal line, verti-

cal line, uniform area). The predicted value is computed as:

x̂ =


b(xi,j−1 + xi,j+1)/2c , if dh < dv, D ≥ Tu

b(xi−1,j + xi+1,j)/2c , if dh > dv, D ≥ Tu

b(xi−1,j + xi+1,j + xi,j−1 + xi,j+1)/4c , otherwise
(5)

where dh = |xi,j−1 − xi,j+1|, dv = |xi−1,j − xi+1,j | and
D = |xi,j−1 + xi,j+1 − xi−1,j − xi+1,j | /2. A uniformity
threshold, Tu, is used to determine the smoothness of the cur-
rent context.

Just like in the previous scheme, the embedding is per-
formed in two stages and variance based sorting can be used
to fine tune the results.

2.4. Full 3× 3 context

The scheme introduced in [7] extends the rhombus to the en-
tire 3 × 3 window by considering the diagonal neighbors as
well. The predicted value is computed as weighted average:
75% of the average of the horizontal/vertical neighbors and
25% of the average of the diagonal neighbors.

As in [5], the smoothness of the context is checked. In [7],
instead of variance, the difference between the maximum and
the minimum graylevel on the prediction context is used. Ob-
viously, the difference between the maximum and the mini-
mum is less costly than the variance on the prediction context.

2.5. Global prediction

The global least-squares predictor computes weights for the
neighbors in the selected context in order to minimize the sum
of the squares of the prediction error. Let y be the column
vector obtained by scanning the entire image along the rows
and let X be the matrix whose rows are the corresponding
context vectors of y. The weights are computed as:

v = (X′X)−1X′y (6)

For the rhombus context, the predicted value of each pixel is
computed as:

x̂i,j =

⌊
4∑

k=1

v(k)xki,j

⌋
(7)

where xki,j are the four neighbors that form the rhombus con-
text: xi−1,j , xi,j−1, xi+1,j and xi,j+1.

X can be extended by adding a first element, x0i,j = 1,
this allows equation (7) to also include a constant term:

x̂i,j =

⌊
v(0) +

4∑
k=1

v(k)xki,j

⌋
(8)

The weights must be inserted in the payload as auxiliary
data in order to make them available at the detection stage.
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Fig. 1. The thirteen test images from the Brodatz set and the
three mosaic images.

2.6. Local prediction

The local least-squares predictor of [8] computes a distinct
predictor for each pixel. This approach uses a B × B block
centered on the current pixel for determining the correspond-
ing weights, instead of the entire image. The current pixel is
replaced in theB×B block with an estimated value computed
with (3) in order make the block available at detection. This
removes the need to transmit the weights to the decoder, they
can be recomputed with (6) from the corresponding block.
For this scheme a raster scan order is used for embedding and
reverse raster scan order for decoding.

Equation (8) outperforms (7) for local prediction (they of-
fer similar results for global prediction). Local prediction is a
more computational approach than the global prediction, The
total cost of computing a distinct predictor for each pixel is
B2 greater than using a single global predictor.

3. EXPERIMENTAL RESULTS

In this section, experimental results on textured images for the
five reversible watermarking schemes of Section 2 are pre-
sented. Thirteen 512 × 512 graylevel images from the Bro-
datz set are used. The thirteen test images are presented in
Fig.1 together with three additional mosaic images used to

test the stability of the global predictor with respect to the
other schemes.

Before going any further, let us first discuss the perfor-
mances of the selected schemes on the classical test images
commonly used reversible watermarking (Lena, Mandrill,
Jetplane, etc.). Both the adaptive rhombus scheme of [6] and
the full context prediction of [7] offer slightly better results
than the rhombus average based scheme of [5]. The adaptive
rhombus tends to perform better on images with well defined
contour lines and good contrast, but brings negligible im-
provements over the rhombus average on images with large
uniform areas. Meanwhile, the full context predictor tends
to have better results on these uniform images, but a stronger
local variation can be a problem for the larger prediction con-
text. The global least-squares predictor is more dependent
on the host image and while it can outperform the rhombus
average, statistically it offers similar results. The local least-
squares predictor introduced in [8] clearly outperforms the
other schemes, mainly on images with well defined contour
lines. For both the global and local least-squares predictors
the rhombus context is used, which was shown to have the
best results in [8].

The local predictor remains the most reliable of the five
schemes on the thirteen test images from the Brodatz set. The
average and maximum gain in PSNR offered by the local pre-
diction scheme with respect to the other four watermarking
schemes are presented in Table 1. The results are obtained for
12×12 pixel blocks, size that remains statistically optimal for
this set. By using the ideal size of the block for each image
brings an average gain of only 0.16 dB on the entire set.

The full context scheme of [7] was outperformed by the
other four approaches on all test images. The larger variation
between neighboring pixels, caused by the textures, disrupted
the already slightly weaker prediction offered by the diagonal
neighbors, which in turn hampered the overall prediction on
the eight pixel context.

The rhombus average based scheme of [5] outperformed
the full context approach with an average gain in PSNR of
0.73 dB for the entire thirteen image set. The adaptive rhom-
bus of [6] offers an average gain of 0.62 dB over the rhombus
average. The largest average gain on a single image is 3.22
dB for the Wood grain texture. The large number of vertical
lines of this texture proved problematic for both the rhombus
average and the full eight pixel context predictors.

The adaptive rhombus was outperformed by the rhombus
average on six test images: Bark, Fabric, Woolen cloth, Sand,
Pigskin and Brick wall. The loss in PSNR is at most 0.68 dB
(on Woolen cloth). The global least-square predictor obtained
a gain in PSNR of 0.39 dB over the adaptive rhombus and had
similar results with the ones offered by the local prediction on
eight test images.

Based on the prediction results, the thirteen textured im-
ages can be split into three categories: chaotic, complex and
stable. On chaotic textures (Woolen cloth and Sand) all the



Table 1. Gain in PSNR of the local prediction scheme with respect to the rhombus average of [5], the adaptive rhombus of [6],
the full context of [7] and the global predictor on the textured images.

LP vs [5] LP vs [6] LP vs [7] LP vs GP
Test image Average Maximum Average Maximum Average Maximum Average Maximum

[dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB]
Grass 2.8 4.1 1.9 3.5 4.3 5.8 0.6 1.3
Bark 0.81 1.8 1.2 1.8 1.7 3 0.17 0.44
Straw 3.8 5.7 1.7 2.3 4.3 6.7 2.9 4.2
Fabric 0.97 2.9 1.3 1.7 2 4.9 -0.14 0

Woolen cloth 0 0.23 0.69 1.3 0.3 2.3 -0.04 0.06
Leather 1.8 2.8 0.38 1.4 2.6 3.8 0.02 0.73

Sand 0.06 0.4 0.39 0.99 0.57 1.4 -0.09 0.12
Water 1.3 1.9 1.1 1.4 2.4 3.5 1.1 1.4

Wood grain 4.8 5.2 1.5 4 5.7 7.2 0.25 0.43
Raffia 1.2 1.5 -0.4 1.8 2.5 2.9 0.18 0.45

Pigskin 0.79 2.7 1.2 2.7 1.1 3.8 0.54 3
Brick wall 0.45 0.88 0.61 1.3 0.75 2.3 0.11 0.31

Plastic bubbles 1.2 1.8 0.44 1.2 1.7 2.4 1.2 2
Average gains 1.5 2.5 0.94 2 2.3 3.8 0.53 1.1

predictors offer similar results. The distribution of graylevel
values for the neighbors tends to vary from pixel to pixel,
not just from region to region. For this type of textures the
rhombus average, the less complex of the five predictors, is
the most suitable approach. Complex textures (Grass, Straw,
Water and Plastic bubbles), while varying from region to re-
gion, tend to have a clear local pattern. For these textures lo-
cal prediction is ideal and brings considerable improvements
over to other prediction schemes. And finally, stable textures
(Bark, Fabric, Leather, Wood grain, Raffia and Brick wall)
have a considerably reduced variation between regions rela-
tive to the other texture types. Because of this lack of varia-
tion, the use of local prediction does not bring any significant
improvements over its global counterpart.

The global prediction has overall good results on the set,
but its performance is mainly due to the texture stability of the
host image. Thus, let us next consider a simple experiment.
The test image Leather (which has a stable texture) is split
into four equal sized regions, three regions are then rotated
(the first by 90o, the second by 180o and the third by 270o)
forming the Mosaic1 image. The results of the five predictors
on the new image are presented in Fig. 2. The variation bet-
ween regions induced by rotation has caused an average drop
in PSNR of 1.5 dB for the global predictor, while the effect
on the other predictors is negligible.

An image can contain multiple textures. In order to sim-
ulate this case, we created the images Mosaic2 and Mosaic3
by combining parts of different textures. Notice that, the used
textures (Bark, Fabric, Leather and Rafia) are all stable tex-
tures, the global and local predictors had similar results on
them. Fig. 2 shows that for both mosaic images the global
predictor has a drop in performance relative to the local pre-

dictor of 0.54 dB on Mosaic2 and 0.48 dB on Mosaic3. For
images with multiple textures the performance of all the tested
watermarking schemes, except the global prediction, can be
determined by evaluating the performance on each individ-
ual texture. Multiple textures are problematic for the global
predictor especially when they have conflicting orientations.

4. CONCLUSIONS

The results of prediction error expansion reversible water-
marking for texture images have been analyzed. Five predic-
tion schemes defined on the rhombus context have been con-
sidered and the textures have been classified accordingly. As
expected, the local least-squares based scheme provides very
good results. On some textures, the global predictor based
scheme can give almost similar results with the local predic-
tor based ones.
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