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ABSTRACT

In this paper we utilize Bayesian modeling and inference to learn
a softmax classification model which performs Supervised Classifi-
cation and Active Learning. For p < 1, lp-priors are used to impose
sparsity on the adaptive parameters. Using variational inference, all
model parameters are estimated and the posterior probabilities of
the classes given the samples are calculated. A relationship between
the prior model used and the independent Gaussian prior model is
provided. The posterior probabilities are used to classify new sam-
ples and to define two Active Learning methods to improve classifier
performance: Minimum Probability and Maximum Entropy. In the
experimental section the proposed Bayesian framework is applied to
Image Segmentation problems on both synthetic and real datasets,
showing higher accuracy than state-of-the-art approaches.

1. INTRODUCTION

The goal of Supervised Classification is to learn a model which au-
tomatically assigns samples to a set of predefined categories. Differ-
ent approximations have been proposed in literature. For example,
Support Vector Machines (SVMs) [1, 2] find the boundary decision
which maximizes the distance between support vectors, Bayesian
approaches such as Relevance vector machine [3] or Gaussian Pro-
cess Classification [4] attempt to learn the underlying probabilistic
model.

The use of Bayesian modeling and inference provides huge ben-
efits: prior distributions are used to introduce information on the
adaptive parameters, and hyperparameters are learned from data us-
ing a consistent framework. Priors based in lp-quasinorms, p ≤ 1,
enforce sparsity on the adaptive parameters. The use of sparse pri-
ors has already been reported for softmax classification problems,
see [5] for the use of the l1 prior, and [6, 7] for the use of quadratic
prior. However, the use of lp-quasinorms, p < 1, is of particular
importance when only very few features are relevant to the target
output of a large number of features. Current approaches utilizing
lp-regularization treat the logistic regression from a likelihood-based
perspective, and employ a cross-validation procedure to estimate the
required regularization parameters (see [8] for details). Here we pro-
pose a Bayesian modeling and inference approach to sparse softmax
classification using lp-priors with p < 1. For a given x, the output
vector y(x) = [y1(x), . . . , yK(x)]T consists of the 1-of-K binary
representation of its classification. We have
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where the function φ : X → H, maps the observed x ∈ X into
a higher dimensional feature space H of dimension M whose first
component is 1 and W is a matrix whose column vectors are the
so called adaptive vectors w1, . . . ,wK . The goal in softmax clas-
sification is to learn the adaptive matrix W from a set of samples
xi, i = 1, . . . , N with known classification y(xi), i = 1, . . . , N .

Getting the ground-truth label of each sample is in general a
costly task. Active Learning (AL) techniques provide an iterative
alternative to minimize such cost (see [9] for a complete survey).
These techniques train an initial classifier using a small dataset, then,
based on an optimality criterion, iteratively select samples (without
knowing their labels). These samples are then classified by an oracle
and used to improve the initial classifier.

AL techniques depend on the model the classifier learns, and
therefore each classifier has its own AL techniques. For SVM, rel-
evant approaches are: the sampling approach discussed in [9], the
binary- and multiclass-level uncertainty [10], and the entropy-query-
by-bagging [11]. In [12] a Bayesian framework is proposed and dif-
ferential entropy is used to select new samples. In [13] A Gaussian
process is used to estimate the posterior distribution of the labels,
and three AL methods are proposed: maximum variance (equiva-
lent to differential entropy in [12]), minimum distance to decision
boundary, and a combination of both minimum normalized distance.

The goal of this paper is twofold. Firstly, using a prior based
on lp-quasinorms, we formulate the softmax classification problem
from a Bayesian viewpoint. All required algorithmic parameters are
also included in the proposed Bayesian model, and are estimated
along with the unknowns. Due to the intractability of the posterior
distributions, we employ Variational Bayesian analysis to provide an
approximation to the posterior distribution of the unknowns. A rela-
tionship between the prior model used and the independent Gaussian
prior model is also provided. Secondly, we tackle AL by utilizing the
posterior distribution of the classes.

The paper is organized as follows. In Section 2 we use Bayesian
modeling to define probability distributions on the unknowns. Vari-
ational inference is used to develop a training algorithm and a clas-
sification rule in Section 3. A study on the relationship between the
proposed classification model and the use of Gaussian independent
prior models is presented in Section 4. AL techniques are proposed
in Section 5. In Section 6, the proposed methods are applied to Im-
age Segmentation on a synthetic example and a real dataset. Con-
clusions are presented in Section 7.



2. BAYESIAN MODEL

To perform Bayesian inference we assume that we already have the
K−dimensional classification vectors yi = y(xi) associated to the
feature samples φ(xi), i = 1, . . . , N . Then we can write

p(Y|W) =

N∏
i=1

p(yi|W) (2)

where Y is aN ×K matrix with ith row yT
i whose components are

yik, k = 1, . . . ,K, p(yi|W) has been defined in Eq. (1) and the set
X containing all the used samples, has been omitted for simplicity.

To estimate W we use, for each of its columns, the prior distri-
bution p(wk|αk) based on lp-quasinorms

p(wk|αk) ∝ αM/pk exp

[
−αk

M∑
i=1

|wki|p
]
, (3)

where αk > 0 and 0 < p ≤ 1, wk = (wk1, . . . , wkM )T, k =
1, . . . ,K. This type of prior has been shown to enforce sparsity in
estimation problems like logistic regression (see [14] and [15] for a
regularization point of view) and in areas like image restoration and
compressive sensing (see, for instance [16]).

Then, given α = (α1, . . . , αK)T, we have

p(W|α) =

K∏
k=1

p(wk|αk) . (4)

Finally, we assume that each αk, k = 1, . . . ,K has as hyperprior,
p(αk), the Gamma distribution, p(αk) = Γ(αk|aoαk , b

o
αk ), where

boαk > 0 and aoαk > 0, and have the following global model

p(α,W,Y) = p(α)p(W|α)p(Y|W). (5)

3. VARIATIONAL BAYESIAN INFERENCE

The Bayesian paradigm dictates that inference on (α,W) should
be based on p(α,W|Y). However, p(α,W|Y) cannot be found
in closed form. Therefore, we apply variational methods to approx-
imate this distribution by a distribution q(α,W). The variational
criterion used to find q(α,W) is the minimization of the Kullback-
Leibler (KL) divergence, given by

KL(q(α,W)‖p(α,W|Y)) = const (6)

+

∫ ∫
q(α,W) log

(
q(α,W)

p(α,W,Y)

)
dαdW.

Unfortunately, due to the form of the prior and the observation
models defined in (4) and (2) respectively, the integral above cannot
be calculated. To solve this problem we proceed to bound below the
distribution p(α,W,Y) by a function which renders the calcula-
tion of KL(q(α,W) ‖ p(α,W|Y)) possible when p(α,W,Y)
is replaced by such a function. A lower bound on p(wk|αk), k =
1, . . . ,K is found by using the following inequality (see [17], and
[18] based on [19])

a
p
2 ≤ p

2

a+ 2−p
p
b

b1−p/2
, (7)

for a ≥ 0, b > 0, and 0 ≤ p ≤ 2, which applied to the energy of the
prior produces

αk
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1

2
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M∑
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w2
ki + 2−p

p
θki

θ
1−p/2
ki

, (8)

where θi > 0. Consequently, for the prior in Eq. (3) we have

p(wk|αk) ≥M(αk,wk,θk) = (9)

= const× αM/pk exp

(
−1

2
αkp

M∑
i=1

w2
ki + 2−p

p
θki

θ
1−p/2
ki

)
,

where θk = (θk1, . . . , θkM )T, and we can write

p(W|α) ≥
K∏
k=1

M(αk,wk,θk) = M(α,W,Θ). (10)

where Θ is a matrix with column vectors θ1, . . . ,θK . In order to
obtain a lower bound on p(Y|W) we follow [6] and notice that for
any u ∈ RK and β ∈ R we have

ln

K∑
k=1

euk ≤ β +

K∑
k=1

uk − β − ξk
2

+

K∑
k=1

(λ(ξk)((uk − β)2 − ξ2k) + ln(1 + eξk )) (11)

for all ξk ∈ R+
0 with λ(ξk) = 1

2ξk

(
1

1+e−ξk
− 1

2

)
. Applying (11)

to Eq. (2) we obtain

ln p(Y|W) =

N∑
i=1

ln p(yi|W) ≥
N∑
i=1

K∑
k=1

yikw
T
kφ(xi)

−
N∑
i=1

K∑
k=1

(
wT
kφ(xi)− βi − ξik

2
+ ln(1 + eξik ))

−
N∑
i=1

K∑
k=1

λ(ξik)((wT
kφ(xi)− βi)2 − ξ2ik)

−
N∑
i=1

βi = ln H(W,Ξ,β,Y), (12)

where Ξ is a matrix with row vectors ξT
i , i = 1 . . . N , each of these

vectors has the form ξi = (ξi1, . . . , ξiK)T and β = (β1, . . . , βN )T.
Notice that in [6] the same parameter β is used for all the sam-

ples.
Using the lower bounds in (10) and (12), the joint distribution is

bounded below by

p(α,W,Y) ≥p(α)M(α,W,Θ)H(W,Ξ,β,Y)

=F(α,W,Θ,Ξ,β,Y) . (13)

We replace p(α,W,Y) by this lower bound in (6) and use the
factorization q(α,W) = q(α)q(W).

Then the posterior distribution q(wk), k = 1, . . . ,K is the mul-
tivariate normal distributionN (<wk>,Σwk ) where

Σ−1
wk = Λk + 2

N∑
i=1

λ(ξik)φ(xi)φ
T(xi), (14)

<wk> = Σwk

N∑
i=1

((yik −
1

2
)φ(xi) + 2βiλ(ξik)φ(xi))

with Λk = diag
(
<αk>pθ

p/2−1
ki

)
, i = 1, . . . ,M .

Furthermore we have

θki = <w2
ki> = (Σwk )ii + (<wki>)2 . (15)



Furthermore q(αk) = Γ(αk|aoαk+M
p
, boαk+

∑M
i=1 θ

p/2
ki ) with mean

<αk> =
1

p

aoαk p+M

boαk +
∑M
i=1 (θki)p/2

. (16)

Finally we have

ξik =
√

φT(xi)Σwkφ(xi) + (<wk>Tφ(xi)− βi)2, (17)

and

βi =
K − 2 + 4

∑K
k=1 λ(ξik)<wk>

Tφ(xi)

4
∑K
k=1 λ(ξik)

. (18)

Notice that the uncertainty of the estimate of wk is incorporated
into the estimation procedure of the other unknowns by the use of
the covariance matrix Σwk in (15), (16) and (17).

The above inference leads to a learning procedure which is sum-
marized in Algorithm 1. At convergence this algorithm estimates
all the parameters, including the distribution of the adaptive vectors
wk. The point estimates of the adaptive vectors are 〈wk〉 in Eq. (14).
Given a new sample x∗, we utilize as predictive distribution of the
classes

p(Ck|x∗) =
exp(〈wk〉Tφ(x∗))∑K
i=1 exp(〈wi〉Tφ(x∗))

(19)

and assign x∗ to the class with maximum probability.

Algorithm 1 Learning Procedure

Require: α0 = (1, . . . , 1)T, θ0ki = 1, ξ0ik = 1 and βi = 1.
1: repeat
2: Calculate q(W)n+1 using Eq. (14).
3: Calculate q(α)n+1 using Eq. (16).
4: Parameters θn+1

ki , ξn+1
ik , and βn+1

i are updated using Eq. (15),
Eq. (17) and Eq. (18) respectively.

5: until convergence

4. RELATION TO INDEPENDENT GAUSSIAN PRIOR
MODEL

Let us study here the relationship between the proposed classifica-
tion model and the use of Gaussian independent prior models on the
components of wk, k = 1, . . . ,K. Let us assume that

pG(wk|υk) ∝
M∏
i=1

υ
1/2
ki exp

[
−1

2
υkiw

2
ki

]
, (20)

p(υk) =

M∏
i=1

p(υki) =

M∏
i=1

Γ(υki|aoαk , b
o
αk ) , (21)

where υk = (υk1, . . . , υkM )T, k = 1, . . . ,K and the parameters
aoαk , b

o
αk are the ones defined for the lp-quasinorms.

Utilizing the same observation bound in (12), we obtain

pG(Υ,W,Y) = p(Y|W)

K∏
k=1

p(υk)pG(wk|υk)

≥ H(W,Ξ,β,Y)
K∏
k=1

p(υk)pG(wk|υk) . (22)

where Υ is a matrix with row vectors υT
k , k = 1 . . .K, each of these

vectors has the form υk = (υk1, . . . , υkM )T

Utilizing qG(W) =
∏K
k=1 qG(wk), the variational posterior

distribution qG(wk) isN (<wk>G,Σwk,G) with parameters

(Σwk,G)−1 = Λk,G + 2

N∑
i=1

λ(ξik)φ(xi)φ
T(xi) , (23)

<wk>G = Σwk,G

N∑
i=1

((yik −
1

2
)φ(xi) + 2βiλ(ξik)φ(xi),

Λk,G = diag (<υki>) . (24)

The mean of the posterior distribution approximation of υki is

<υki> =
aoαk + 1

2

boαk +
<w2

ki
>

2

. (25)

Let us assume that aoαk = boαk = 0 and rewrite (14) making
explicit its dependency on p. Utilizing (16) we have

Λk,p = diag

(
aoαk p+M

boαk +
∑M
i=1 θ

p/2
ki

θ
p/2−1
ki

)
(26)

Taking the limit p→ 0 and using (15), we obtain

lim
p→0

Λkp = diag
(
θ−1
ki

)
= diag

(
<w2

ki>
−1) . (27)

Let us now examine the Gaussian model. When aoαk = boαk =
0, we have from (24) and (25)

Λk,G = diag (<υki>) = diag
(
<w2

ki>
−1) . (28)

Consequently, when the starting distributions of the variational
algorithms are the same we have limp→0 Λk,p = Λk,G. Therefore,
in the limiting case p→ 0, the posterior distributions associated with
the lp-prior and the independent Gaussian priors for each component
of wk coincide.

5. INCREMENTAL AND ACTIVE LEARNING

Let us now assume that we want to add a new observation xN+1 to
the training set, whose corresponding y(xN+1) will be provided by
an oracle. To select xN+1 we propose two active learning methods
which are based on the posterior probabilities of the classes.

In the first method, called Minimum Probability Criteria, we se-
lect the next sample to be used to improve the classifier as

xN+1 = arg min
x∗

(max
k

(p(Ck|x∗))). (29)

In the second method, named Maximum Entropy Criteria, we
select the sample whose posterior distribution of the classes is less
informative. Formally

xN+1 = arg max
x∗
−

K∑
k=1

p(Ck|x∗) ln p(Ck|x∗). (30)

6. EXPERIMENTAL RESULTS

Due to space limitations, in this section we provide a limited number
of experiments to analyze the performance of the proposed model for
classification and AL.
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Fig. 1. (a) Original synthetic image. (b) Estimated WT for the synthetic dataset. (c) Estimated WT for the real dataset.

6.1. Supervised Classification results

Figure 1(a) shows a synthetically generated 60 × 60 image. The
goal is to segment the three vertical rectangles in the image. Each
rectangle represents one class in our segmentation problem. The
pixels in each class are drawn from Gaussian distributions with mean
vectors µ1 = (0.9, 0.5, 0.1)T, µ2 = (0.5, 0.5, 0.5)T and µ3 =
(0.1, 0.5, 0.9)T, respectively. The three components of each pixel
are normalized RGB values, each component is corrupted with noise
of standard deviations 0.05, 0.5 and 0.05 respectively. Notice that the
G band does not provide information to the classifier.

The experiment is repeated 10 times with 10 different training
sets, each with 12 samples (4 from each class). As accuracy measure,
the Cohen’s Kappa statistic (κ-index) is calculated on a test set of
1500 samples (500 from each class).

The values p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
were tested. For values p = 0.1, . . . , 0.6 the obtained κ-index was
1, and 0.99 for the other values. Therefore, for p = 0.1, . . . , 0.6, the
proposed method segments the synthetic image correctly on the test
set. Fig. 1(b) shows the coefficients of the estimated adaptive matrix
WT for p = 0.1. Non zero entries represent components relevant
to classification. The proposed model does not use the G band and
assigns zero to the corresponding adaptive coefficients.

We compare the proposed method with an SVM classifier. To
perform a fair comparison we use a Gaussian kernel whose parame-
ter is manually tunned to obtain the best performance. The SVM cost
parameter is estimated using cross-validation. The obtained mean κ-
index was 0.95, and therefore, the SVM classifier does not segment
correctly the whole test sets from the synthetic image.

In our second classification experiment we evaluate the pro-
posed Bayesian classifier on the real data set “Image Segmentation”,
available on-line at the “UCI Machine Learning Repository” [20].
The goal is to classify a set of pixels in 7 classes: “BRICKFACE”,
“SKY”, “FOLIAGE”, “CEMENT”, “WINDOW”, “PATH” and
“GRASS”. The data set has 2310 samples (330 from each class).
Each sample is a 19 component vector representing different at-
tributes measured on a 3× 3 neighborhood of the pixel of interest.

The experiment is repeated 10 times on 10 different training sets,
each with 126 samples (18 from each class). The κ-index is calcu-
lated on a test set with 1050 samples (150 from each class). For
p = 1, the obtained κ-index was 0.86. The best κ-index, 0.88, was
obtained at p = 0.02, this implies that lp-quasinorms with p < 1
can outperform the l1-norm.

Fig. 1(c) shows the absolute value of the estimated adap-
tive coefficients in WT . Components 9, 12, 14, 15, 17, 18, 20
correspond to attributes “‘horizontal edge mean”, “rawred-mean”,
“rawgreen-mean”, “excess red”, “excess green”, “value-mean” and
“hue-mean”, respectively. Attributes like “row” or “column”, which
correspond to pixel position in the image, have no discriminative
information. In those components, the estimated values of W were

0 (second and third columns in the figure). The fourth component is
“number of pixel where attributes were measured”, this component
is equal to 9 for all samples, consequently the fourth component
acts as the bias for each class while the first component, which was
introduced for this purpose, takes the value zero. Interestingly, and
as expected, if we remove the fourth component, the estimated val-
ues of the first components are the values of the fourth components
multiplied by 9. Notice that because of the prior used, the classifier
prefers to make zero the first component and assign small values to
the adaptive coefficients of the fourth feature.

Finally we compare again the proposed method with an SVM
classifier. Its mean κ-index was 0.84. Its performance is 0.02 and
0.04 lower than the proposed classifier for p = 1 and p = 0.02,
respectively. Additionally we note that our proposed method does
not need parameter tunning.

6.2. Active Learning results

To evaluate the performance of the proposed AL methods, we utilize
learning curves. We start by training the classifier using Algorithm
1 on a reduced subset from the training set. The estimated adaptive
matrix W is then used to classify the test set, the κ-index is utilized
as accuracy measure in the learning curves. Next, the AL methods
proposed in Section 5 are used to select a new sample from the train-
ing set and the classifier updated.

The proposed AL methods in Sections 5 are noted MIN PRO
(minimum probability) and MAX ENTRO (maximum entropy).
They are compared to the following AL methods: margin sam-
pling (SVM-MS) [9], entropy-query-by-bagging (SVM-EQB) [11]
and multiclass-level uncertainty (SVM-MCLU) [10]. All of them
use SVM as classifier. The cost parameter is estimated by cross-
validation.

For the synthetic dataset, the experiment is repeated 10 times
with 10 different initial training sets. The starting training set has 6
samples (2 from each class) and the whole training and test sets have
1500 samples (500 from each class). We use p = 0.1.

Figure 2(a) shows the mean κ-index learning curves. The pro-
posed methods start at κ-index=0.91. Their learning rates are very
fast, reaching κ-index=1 after adding only 2 samples to the inital
training set. Both methods have the same behavior and perform bet-
ter than randomly selecting the new samples from the training set
and using the proposed classifier. The random approach does not
reach κ-index=1 even after 20 samples have been added. Methods
that use a SVM classifier start at κ-index=0.78, so they initially per-
form worse than our classification method. SVM-MCLU needs 5 to
reach κ-index= 1. SVM-EQB obtains a κ-index=1 when 11 samples
have been added. Furthermore SVM-MS does not achieve κ-index
=1 even when 20 samples have been added.

For the real dataset we use a test set with 1050 samples (150
from each class), the whole training set also contains 1050 samples
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(150 from each class). 10 initial training sets with 21 samples (3
from each class), are used. We use p = 0.02.

Figure 2(b) depicts the mean κ-index. The proposed methods
start at 0.72 and reach κ-index=0.98 when the training set has 150
samples. After that the corresponding learning curves become flat.
In this experiment MIN PRO outperforms MAX ENTRO, in par-
ticular notice the difference between both methods when we have
less 100 samples. Both methods outperform random sampling which
reaches κ-index=0.9 when 200 samples have been added.

The SVM classifiers utilize a Gaussian kernel whose parame-
ters are manually tunned to obtain the performance. They start al-
most 0.15 below the proposed methods. SVM-MS does not perform
well and its learning curve is similar to random sampling. SVM-
MCLU and SVM-EQB performs similarly when 150 samples have
been added and reach κ-index = 0.96. However SVM-EQB is better
than SVM-MCLU for less than 150 samples. None of these methods
outperformed the proposed ones.

7. CONCLUSIONS
In this work Bayesian modeling and inference have been used to
address Supervised Classification and AL problems. The lp-prior
models utilized on the adaptive coefficients have promoted sparsity
on the estimated adaptive parameters. Variational inference has been
used to estimate all the model parameters and connections with in-
dependent Gaussian priors established. The predictive distribution
of the classes has been calculated. This distribution has been used
to define two AL methods. In the experimental section the proposed
approach has been applied to Image Segmentation problems. Exper-
imental results have shown that the use of lp-priors allows the classi-
fier to select discriminative features and discard non-relevance com-
ponents. The proposed approach has shown higher accuracy than
SVM methods in both classification and AL problems.
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