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ABSTRACT

This study proposes a new approach for quantifying complex-
ity of physiological signals characterized by a spectral distri-
bution in modes. Our approach is inspired by wavelet entropy
but based on a modal representation: Synchrosqueezing trans-
form. It is calculated for each time sample within the cone of
influence of the decomposition. This index is first validated
and discussed on simulated multicomponent signals. Finally,
it is applied to assess postural control and ability at using all
the sensory resources available. Results show significant dif-
ferences in our index following an induced change in sensory
conditions whereas a conventional approach fails. This in-
dex may constitute a promising tool for detection of postural
troubles.

Index Terms— Synchrosqueezing transform, Wavelet
entropy, Complexity, Postural signals, CoP data.

1. INTRODUCTION

Assessing complexity of a multicomponent physiological sig-
nal is a way to give insights into the integrity of the underly-
ing system. Entropy is the most well-spread way to quantify
degree of order and therefore complexity. However statisti-
cal approaches used for physiological signals, such as sam-
ple entropy (SEn), suffer from a lack of reliability [1]. This
rises the question of taking into account phenomenons occur-
ring at the different scales at stake. Different methods have
been proposed to attempt to integrate these multiple scales
within the calculation of entropy. In the case of physiologi-
cal signals characterized by a spectral distribution in modes
such as locomotor or postural ones, a method called Intrinsic
Mode Entropy (IME) was proposed thereby combining em-
pirical mode decomposition (EMD) and sample entropy [2].
This approach, however, encounters some drawbacks relative
to the use of EMD (e.g. mode mixing phenomenon, averaging
of modes with different frequency content) and the use of SEn
(parameters selection).
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From the point of view of dynamical systems, complex pro-
cesses are associated with large spectrum, offering a wealth of
information contrary to periodic ones which are monotonous,
repeatable and deprived of information. The hypothesis of
Goldberger about the human body is that aging and disease
are characterized by a loss in spectral resources whereas re-
habilitation depends on their broadening and the ability to ex-
tend itself [3, 4]. Estimating complexity of a dynamical sys-
tem may then consist in quantifying its spectral wealth.

Our aim is to develop an index of complexity consistent
with oscillatory multicomponent signals. The proposed ap-
proach is expected to be: (1) adaptive i.e. requires minimum
a priori assumptions, (2) local to take into account non-
stationarities and (3) readable for component identification.
Therefore, a novel approach of wavelet entropy (WE) [5] is
proposed and based on Synchrosqueezing transform (SQT).
The original index is first described. Secondly, changes oper-
ated are detailed: (1) the underlying time-frequency represen-
tation and (2) the building of a local index. A validation step
is performed on a simple composite model and a postural-like
multicomponent model. A preliminary study on real CoP
signals is finally described.

2. CHANGES FROM WE

2.1. Time-frequency representation from SQT

The WE is originally based on orthogonal discrete wavelet
transform (ODWT). As for the orthogonal feature of the de-
composition basis, it makes the calculation of energy partic-
ularly easy and directly linked to the coefficients of the time-
frequency representation (TFR). The main drawback of this
method is that it proceeds to a non-adaptable subband filtering
whose limits and width are fixed by the sampling frequency.
Therefore, the resolution is completely fixed and two modes
hold within the same subband cannot be distinguished. In our
approach, SQT is used instead of ODWT. It offers a modal
representation which is consistent with the spectral content
of multicomponent physiological signal by reassigning coef-
ficients of the CWT in frequency.



2.2. Building a local index of complexity

In the case of WE, the monitoring of the temporal evolution
is obtained from a segmentation in the temporal domain with
a rectangular windowing function. Then the ODWT is cal-
culated on each of these segments following by the WE. The
window length must be fixed by the user at the beginning of
the analysis involving assumptions about the dynamics of the
phenomenon. Concerning CoP data, such a knowledge is not
available and a priori hypotheses are not desirable. A recent
approach inspired by the Welch’s method was proposed by
Xu et al. to reduce the variability of the estimation [6]. It
consists, for each segment, in applying a sliding window on
which WE is calculated and averaged.
To avoid a windowing approach, SQT is calculated on the
whole signal. A temporal index of entropy is obtained thereby
calculating WESQT at each sample in coherence with the
spectral dynamics of the underlying CWT. Indeed, energy is
more localized on small scales than on large ones. Suppose
that the temporal support of the mother wavelet ψ is compact
[−C,+C], the cone of influence of the representation at time
b0 contained all the points whose coordinates (b, a) verifying
that b0 is included in the support of the atom ψb,a [7]:

Coneb0 = {(b, a)|b0 ∈ [b− Ca; b+ Ca]}
= {(b, a)||b0 − b| ≤ Ca}

To take this behavior into account, coefficients located within
the cone of influence of the representation are assigned to the
considered sample and weighted to favor those close to its
center. The contribution of a coefficient at scale a and time
b, Wb,a, is weighted by a factor |b−b0|a .1cone. In this way,
the temporal index of complexity corresponds to all the local
modes depending on the scattering intrinsic to the CWT. The
spectral dynamics of the index depend on the overlap between
two consecutive windows and thus on the local behavior of
the CWT.

2.3. Calculation of WESQT

Given s a signal, Cj(k) the coefficient of the SQT and
SuppCone(k,j) the support of the cone of influence at time sam-
ple k and scale j (1 ≤ j ≤ amax where amax = f0/fmin,
f0 is the central frequency of the mother-wavelet and fmin is
the inferior boundary of the frequency range), the WESQT at
time sample i is calculated from:

Ej(i) =
∑

k∈SuppCone(k,j)

|b− b0|.|Cj(k)|2

a
, energy at scale j (1)

Etot(i) =

amax∑
j=1

Ej , total energy (2)

pj(i) =
Ej(i)

Etot(i)
, relative energy at scale j (3)

WESQT(i) = −
amax∑
j=1

pj(i) ln(pj(i)), SQT entropy at time i. (4)

3. WESQT: VALIDATION ON SIMULATED SIGNALS

3.1. A preliminary composite model

WESQT is tested on a preliminary composite model which
parametrization is consistent with the frequency range of pos-
tural data. This step aims at illustrating the functioning of the
WESQT and its ability at detecting changes in complexity.

Method The SQT is calculated on the whole signal: f0 =
6Hz, fmin = 0.11Hz, 64 voices. This signal is the sum of
three sines at 1.5 and 3Hz respectively appearing at 0s and
100s. The record lasts 200s and is sampled at 40Hz (Fig.1).

Fig. 1: SQT and WESQT of a sum of sines appearing gradu-
ally at 1.5Hz and 3Hz. Four contour lines of the cone of in-
fluence are represented at 150s on the reallocated scalogram.
The corresponding WESQT (plain line) is compared with the
expected level of complexity (dotted line).

Observation and discussion WESQT increases as a new
component appears. As expected it is equal to zero in the
presence of only one component. WESQT renders qualita-
tively variations in complexity but a weak bias may be noted
comparatively to the theoretical values from a quantitative
point of view. This point will be discussed in further works.



3.2. A postural-like multicomponent model

WESQT is then tested on a statistical model close to what it
may be observed by representing postural signals in a time-
frequency plane. This validation step aims at checking that
WESQT is able to reflect changes in complexity independently
of an homogenous energy variation throughout the scales
thereby facing it to two sets of simulated multicomponent
signals.

Method The SQT is calculated on the whole signal: f0 =
6Hz, fmin = 0.11Hz, 64 voices. The effect of a change in
complexity (resp. energy) is assessed by a Kruskall-Wallis
test with repeated measures on WESQT before (Pre versus af-
ter perturbation (Post). Mean values of entropy on the twenty
seconds before and after perturbation are compared. Addi-
tionally, for each simulation values of WESQT obtained be-
fore the perturbation and the ones obtained after are compared
with a paired t-test (Pre versus Post).

Set 1: Variation of complexity with constant energy Ten
white gaussian noise were generated (120s at 100Hz) and
high-pass filtered (FIR at 3Hz, order 200) on the second part.
Energy was normalized on both parts of the recording (Fig.
2).

Fig. 2: SQT (up) and WESQT (down) of a white gaussian noise
with variable complexity and constant energy (Set 1).

Set 2: Variation of energy with constant complexity Ten
white gaussian noise were generated (120s at 100Hz), band-
pass filtered (FIR between [1Hz; 6Hz], order 200) and ampli-
fied by a factor two on the second part. Energy was normal-
ized on the two parts of the recording (Fig. 3).

Results and discussion As expected, WESQT lowers from
Pre- to Post-conditions for the first set (KW=13.72, p=0.0002)
but no statistically significant difference is observed on the
second one (KW=3.29, p=0.0696). Individual comparisons

Fig. 3: SQT (up) and WESQT (down) of a white gaussian noise
with variable energy (Set 2).

showed significant difference between values of WESQT ob-
tained in Pre- and Post-conditions for the whole simulations
of the first set confirming a change in complexity after per-
turbation (p<0.05) but none for the second set. Altogether,
these results confirm that the developed index allows to show
variation of complexity independently of homogenous en-
ergy variation throughout the scales. Moreover, our local
index remains stable on stationary configuration.

4. APPLICATION TO REAL COP DATA

Maintaining upright stance results from the integration of vi-
sual, vestibular and somatosensory information. Assessment
of postural control and equilibrium to detect postural troubles
is classically based on the measurement of the center of pres-
sure (CoP) displacements with a force platform. Numerous
studies about the spectral content of CoP data show that each
sensory afferent corresponds to a specific range of frequencies
and validate our decision to consider entropy from a spectral
point of view [8–14]. Being able to adapt oneself to changes
in conditions is testament to proper functioning of the postu-
ral system and its capacity at making use of all the resources
from the individual, the task and the environment available.
Modification of the sensory context (e.g. sensory stimulus,
fatigue, discomfort) may lead to a re-weighting of their re-
spective loads depending on their availability, confidence or
relevance.This phenomenon is called ”sensory re-weighting”.
In terms of signals, one may expect for non-stationarities or
transitory phenomenons. This feature added to the distribu-
tion through scales of the different sensory contribution reas-
sures the interest of a temporal index of complexity in scale.
The present index aims at tracking down changes in postu-
ral strategies and detecting sensory modes reweighting. To
test it, eight healthy subjects were evaluated in a very simple
postural task including an abrupt perturbation.



Fig. 4: SQT and WESQT of the resulting displacements of
the CoP placed opposite. The first 200s, the subject has his
eyes opened and closed during the following 200s. To avoid
boundary effects, only the central 200s are kept. Four contour
lines of the cone of influence are represented at the time of
perturbation on the reallocated scalogram.

Protocol 8 healthy subjects (age: 34.63±11, BMI: 21.41±
1.57) were asked to stand as still as possible fixing a tar-
get placed on the wall during 200s (EO) and closing their
eyes the 200 following ones (EC). Displacements of the CoP
were collected using a force platform (Satel) at a sampling
frequency of 40Hz. Because of boundary effects, analysis is
performed considering only the central 200s around the pertu-
bation. Considering the sample size, nonparametric statistics
are used for mean comparisons (Wilcoxon signed ranks test,
n = 8, α = 5%). Additionally, for each subject, the values
of WESQT obtained with EO are compared with the ones with
EC (Paired T-test, n = 4000, α = 5%).

Results and discussion Postural stability is assessed through
conventional spatiotemporal parameters: (1) Root mean
square (RMS) amplitude (mm), (2) RMS velocity (mm.s−1),
(3) area of the 95%-confidence ellipse (mm2). As described
in table 1, all the spatio-temporal parameters increase with
EC indicating lower stability with visual deprivation (p<0.05,
0.01, 0.01 respectively). Postural control is assessed through
WESQT and SEn (for comparison). No difference is observed
for SEn whereas WESQT increases with EC (p<0.05) indi-
cating an increase in complexity and resources used (Tab.
1). Individual comparisons showed significant difference
between values of WESQT obtained with EO and EC for
7 subjects over 8 confirming a change in complexity with
visual deprivation (p<0.05).

Investigating postural control is based on the assessment
of complexity. However most of the approaches consider en-
tropy from a temporal point of view and evaluate the degree
of predictability of the time series without taking into account
the multiple scales at stake and transitory processes. Multi-
scale entropy and IME attempts to integrate such an informa-

Parameters EO EC
RMS amplitude (mm) 3.94± 2.09 5.83± 3.07*
RMS velocity (mm.s−1) 9.29± 2.87 17.17± 9.67*
95%-confidence ellipse (mm2) 24.17± 8.28 40.19± 24.13*
SEn 0.76± 0.23 0.83± 0.42
WESQT 4.17± 0.48 4.39± 0.38*

Table 1: Effect of visual conditions on the displacements of
the CoP. Level of significance is set at *: p< 0.05.

tion before applying SEn but the underlying time-scale repre-
sentations used in addition to the difficulties in parametrizing
SEn provide variable and difficult to interpret indexes. The
proposed approach takes up complexity from a spectral point
of view in consistence with the spectral model of CoP signal
depending on its sensory afferents. Besides, the decomposi-
tion scheme underlying SQT allows to improve component
identification thereby driving the reading of the TFR. Pre-
liminary results on real CoP data were obtained by inducing
a non-stationarity during the experiment (deprivation of vi-
sion). This simple protocol reflects situations of daily living
during which frail persons are exposed to fall risk. The analy-
sis of conventional spatio-temporal parameters confirms that
vision deprivation induces instability. An increase in com-
plexity (WESQT ) may be due to the request of other kind of
afferent to compensate for visual deprivation. Such an index
may be particularly interesting for long-term monitoring or
assessment during rehabilitation.

5. CONCLUSION AND PERSPECTIVES

The index of complexity WESQT proposed is based on the
modal decomposition extracted from SQT. WESQT is an index
of entropy through scales which does not necessitate mode re-
construction and allows considering transitory phenomenons.
Besides, WESQT allows a direct reading in terms of frequency
and make the correspondence between modes and the under-
lying spectral model easier. Finally, for each time sample, an
index consistent with the spectral dynamics of the underlying
CWT is obtained by reassigning and weighting coefficients
located within the cone of influence. The ability of WESQT at
detecting changes in complexity was validated both on sim-
ulated signals and real CoP data. It turns out that our index
provides qualitatively good results. Future works may be ded-
icated to the analysis of the bias observed comparatively with
theoretical values. They will take into account the presence
of spurious coefficients may appear during the reallocation
step [15].
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