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ABSTRACT
In this paper, a patient-independent algorithm for online
epileptic seizure detection using only single-lead ECG is pro-
posed. It is tested on 300h of data from adults with temporal
lobe epilepsy. The features are extracted from a period of
linear increase of the heart rate, which typically occurs in this
kind of patients. These features are classified by two different
classifiers: linear support vector machine (LSVM) and linear
discriminant analysis (LDA). The best performance is found
for LDA with a sensitivity of 80.0%, a PPV of 40.5% and
an average detection delay of 31.5s, which are satisfactory
results for online usage in monitoring or warning systems.

Index Terms— Temporal lobe epilepsy, online seizure
detection, ECG, LSVM, LDA

1. INTRODUCTION

Epilepsy is a neurological disorder that affects around 1% of
people worldwide. Automatic seizure detection has been on-
going research for decades, primary by using EEG signals.
Obtaining EEG is however hard outside the hospital and is
rather unpleasant for the patient. Therefore a lot of research
is already done to investigate the possibility of seizure detec-
tion algorithms using easier obtainable biomedical signals.

An example of this is ECG. Literature shows that the oc-
currence of a seizure can lead to an increase of the heart rate
around seizure onset [1,2]. For temporal lobe epilepsy (TLE)
patients, the occurrence of this heart rate increase is very high
and the increase is more clearly visible, following a pattern as
shown in Figure 1(a). It consists of 3 phases: a linear increase
of the heart rate, an optional phase of heart rate stability and
an exponential decrease of the heart rate [3]. The seizure on-
set is typically around the start of the linear phase.

The number of extensively tested algorithms for online
ECG seizure detection in adults is rather limited. A typical ap-
proach is to see whether the heart rate is increased sufficiently
over a short period of time. The method of two moving win-
dows was proposed in [4, 5]. Another approach is to perform
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Fig. 1. (a) Theoretical heart rate pattern around seizure onset.
(b) Heart rate pattern in practice: interference of respiration.

template matching on the entire heart rate pattern [3, 4, 6].
In [3], short fits on the heart rate signal are used in order to
find the linear and exponential phase. Only the slope, corre-
lation and length of these fits are used for seizure detection.
Other algorithms use information from the ECG morphology,
but aren’t evaluated on databases with sufficient inter-ictal pe-
riods [7, 8]. All these methods — except for [3] — however
require (manual) patient-specific training and no optimization
for a patient-independent approach is discussed thoroughly.
Training periods require the occurrence of at least a couple of
seizures, but this can take multiple days for some patients,
making the algorithm hardly usable for some applications.
Therefore, an online patient-independent seizure detection al-
gorithm for TLE patients will be proposed in this paper. It is
trained on the data from other patients and therefore does not
need an extra training period per patient. This algorithm can
be used as part of a warning system in a home environment
for refractory TLE patients (30-40% of patients [9]) or as part
of a (home-)monitoring unit.

2. DATA ACQUISITION

Two different datasets are used in this paper, including in to-
tal 300 hours of ECG data and 40 seizures. Dataset A con-
tains long-term single-channel ECG data from 4 TLE patients
(see Table 1). Database B contains shorter-term ECG data



Patient A1 A2 A3 A4 B1 B2 B3 B4
Age 29 31 43 23 48 51 55 48

Gender m v m m m v m m
Length (h) 72 48 42 81 9 9 27 12
# seizures 7 3 4 6 3 3 9 5

# candidates 79 95 62 118 22 4 16 15

Table 1. Overview of the used dataset.

from another 4 TLE patients, from which segments of 3 hours
of data were chosen in which at least one seizure occurred.
Both datasets were acquired at UZ Ghent. Both datasets were
recorded during video-EEG monitoring and seizures were an-
notated by experienced specialists using scalp and/or intracra-
nial EEG. Because different sampling frequencies were used
in the datasets, all ECG signals were resampled to 250Hz
sampling frequency. This was the most frequently occurring
sampling frequency in the original ECG signals and was cho-
sen to minimize resampling artifacts in the ECG signals.

3. METHODOLOGY

Figure 2 gives an overview of the algorithm proposed in this
paper. Like stated above, some of the literature methods need
the entire heart rate pattern for seizure detection. Waiting for
the entire pattern to occur, would introduce a too large detec-
tion delay for online usage. Therefore, the focus in this paper
will go only to the first phase of the pattern. Features of this
linear phase will be extracted and classified in order to make
distinction between linear phases occurred due to a seizure or
due to other reasons like physical exercise. All these different
steps will be discussed in this section.

3.1. ECG preprocessing

At first, an online QRS detection algorithm is needed to con-
struct the heart rate signal. An online version of Yeh & Wang
[10] is used in this paper, which is enhanced with adaptive
thresholding and a postprocessing step [11]. The instanta-
neous heart rate — computed as the inverse of the RR interval
— is used for the heart rate signal and expressed in beats per
minute (bpm).

3.2. Linear phase extraction

Next, an online algorithm is required to extract the linear
phases from the heart rate signal. In practice, this linear phase
isn’t that nicely linear. There are two main factors that are
responsible for this. The first one is the effect of the respira-
tory signal on the heart rate, called respiratory sinus arrhyth-
mia (RSA). When a person breaths in/out, the heart rate will
increase/decrease compared to the expected heart rate. Fig-
ure 1(b) gives an example of this, but stronger RSA interfer-
ence is possible. The vertical lines indicate the theoretical

Fig. 2. Overview of the proposed algorithm.

Fig. 3. Example of heavy ictal ECG noise. Scalp EEG onset
is located at t=0s.

start and end of the linear phase. The linear phase now seems
to be split up in two linear phases due to RSA. The second im-
portant factor is the occurrence of ictal ECG noise, which can
make the ECG almost unreadable near the end of the linear
phase as illustrated in Figure 3. This will lead to QRS com-
plex detections errors, influencing further heart rate process-
ing. Both kinds of artifacts clearly have an impact on the ease
of detecting the linear phase. The heart rate signal is there-
fore filtered by using a median filter with a length of 15 heart
beats. The effect of RSA and ECG noise can in most cases be
removed by this long median filter, resulting in a signal that
will not decrease during the linear phase.

To extract a candidate linear phase from this filtered heart
rate signal, a period in this signal that doesn’t contain a de-
crease in heart rate is sought. A decrease in heart rate is as-
sumed if the slope of the linear line fit over 10 heart rate sam-
ples is smaller than 0. Linear line fitting is used here in order
to further remove interference of RSA and QRS detection er-
rors. If such a period is found, some simple thresholds are put
on the heart rate signal in this period so that only significant
candidate linear phases are evaluated in further steps:



• Maximal slope of the filtered heart rate signal during the
linear phase > 1 bpm/s.

• Peak heart rate > 90 bpm.

• Heart rate increase during linear phase > 20 bpm.

• Length of linear phase > 15 heart beats.

On the entire dataset, this resulted in 411 candidate linear
phases (see Table 1). Only one seizure in patient B3 wasn’t
accompanied with a candidate linear phase due to the absence
of a significant heart rate increase.

3.3. Feature extraction

Features are extracted after a linear phase is found by the
method discussed above. The used features can be divided
into 3 groups. The first group contains main information
about the linear phase: peak heart rate, heart rate at the be-
ginning of the linear phase, heart rate at rest, maximal slope
of the filtered and original heart rate signal (which will be
called maximal filtered slope and maximal unfiltered slope
from now on) and corresponding R2-values, heart rate in-
crease compared to the heart rate in rest, percentual heart rate
increase (heart rate increase divided by the heart at the start
of the linear phase), length of the linear phase and the mean
and standard deviation of the derivative of the heart rate sig-
nal during the linear phase. An estimation of the heart rate at
rest is made when the linear line fit using least squares mini-
mization of the heart rate signal over a long period has a slope
near zero with limited error.

In a second group of features, frequency information of
the linear phase is evaluated. The heart rate signal is therefore
linearly interpolated to a sampling frequency of 8Hz. The
frequency spectrum is divided into 2 frequency bands: low
frequency band (0.04Hz-0.15Hz) and high frequency band
(0.15Hz-0.4Hz). For each frequency band, the mean power,
maximal power and the power percentage compared to the
total power are stored. Also the spectral entropy is extracted.

Finally, also some features from the minute before the
start of the linear phase are selected. These are the mean heart
rate, the spectral entropy and the Hjorth parameters activity,
mobility and complexity [12].

3.4. Feature selection

It is unsure whether all features listed above have a positive
impact on classification or not. Therefore a sequential for-
ward feature selection algorithm is used during the training of
the classifier. The feature that causes the greatest increase in
accuracy — defined as the average of sensitivity and speci-
ficity — on the training set is added to the feature pool. This
process is repeated until no features with a positive impact
on the performance of the training data can be added, starting
with an empty feature pool. The first two features are how-
ever pairwise selected. This is done for two reasons. The first

reason is to avoid the selection of the peak heart rate as first
feature. This may be the most interesting stand-alone feature,
but further addition of features will hardly improve the per-
formance as this feature is strongly patient-specific. The sec-
ond reason is the fact that a lot of combinations of 2 features
contain very good classification potential as will be shown in
Section 4. Feature selection was done using cross-validation
on the training set, using the leave-one-patient-out procedure.
To avoid overfitting the training set, the maximum number of
selected features is set to 5. This number is chosen because
performance increases start to become marginal at this point,
indicating a possible overfitting of the classifier.

3.5. Classification

To classify the selected features, two different classifiers are
evaluated: linear support vector machine (LSVM) and lin-
ear discriminant analysis (LDA). In LSVM, two different loss
functions are used for both types of error in the primal formu-
lation of the Langragian
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in order to deal with the imbalanced dataset [13]. Both clas-
sifiers are trained using cross-validation using the leave-one-
patient-out procedure.

3.6. Evaluation criteria

In order to evaluate the overall algorithm, multiple factors
need to be evaluated. The sensitivity (Se), specificity (Sp) and
positive predictive value (PPV) of the classifier will be inves-
tigated to check its performance. The seizure that is missed
during the linear phase extraction will be taken into account in
these measurements. The number of false positives per hour
(FP/h) and false positives per seizure (FP/seiz.) give an indi-
cation of the overall performance. Another important factor
for an online seizure detection system is the detection delay.
This is the time difference between the alarm of the algorithm
and the EEG seizure onset. The alarm can go off after the
detection of the linear phase and classification. In order to
remain useful, this delay should stay in a reasonable interval.

4. RESULTS AND DISCUSSION

Feature selection always resulted in using the linear phase
length and the maximal unfiltered slope. Figure 4 shows a
scatter plot of these samples in function of these 2 features
in case of perfect QRS detection. An overall trend seems to
be visible between both features: shorter linear phases need



Fig. 4. Scatter plot of seizure and non-seizure samples in func-
tion of linear phase length and maximal unfiltered slope.

higher maximal slopes, while longer linear phases can have
lower slopes. Three seizures show poor classification results
for these 2 features. These include a linear phase that is split
up due to extreme RSA interference of the linear phase and
2 minor seizures compared to other seizures of that patient.
Another much chosen feature was the spectral entropy of the
heart rate signal before the linear phase. Note that these 3
features are easily computable, making them an interesting
choice for online seizure detection.

Table 2 shows the results of the complete algorithm for
the discussed classifiers for both the feature selection method
as when using the 3 features mentioned above. The usage of
the 3 best features results in slightly better classification, for
which the gain is higher for LDA than for LSVM. The slight
improvements in this performances may be due to overfitting
of the training data during feature selection. The best perfor-
mance is found for LDA using this approach, resulting in a
sensitivity of 80.00%, a specificity of 87.37% and a PPV of
40.51%. Table 3 gives the results per patient for this classifier.
For the patients from Database A, the number of FP/h ranges
between 0.10 and 0.21. Patient A2 has the worst performance
in this statistic. The patient has a high heart rate variability,
which can lead more quickly to sudden high inter-ictal heart
rate increases that may be classified as a seizure. A lot of
the FP’s occur in the post-ictal phase due to the occurrence
of low frequency heart rate increases [14] and high noise lev-
els. Therefore the number of FP/h seems a bit higher than
expected for the shorter-length datasets. The missed seizures
are typically seizures of which the linear phase is split up due
to grouped QRS detection errors or strong RSA interference.

An average detection delay of around 40 s is found in all
mentioned methods. Small changes between both classifiers
depend on which seizures are detected, not on the classifier it-
self as only the linear phase extraction influences it. Around 5
to 6 seconds of this detection delay are due to the median fil-
ter used for the linear phase extraction. When selecting only
the 3 mentioned features for feature extraction, an improve-
ment for this detection delay is possible. During linear phase

Method Se(%) Sp(%) PPV(%) FP/h delay(s)

LDA 75.00 90.32 45.45 0.12 39.82
LSVM 77.50 84.68 35.23 0.19 39.65
LDA* 80.00 87.37 40.51 0.16 40.06

LSVM* 77.50 85.22 36.05 0.18 39.65
LDA*-F 80.00 87.37 40.51 0.16 31.50

LSVM*-F 77.50 85.22 36.05 0.18 31.10

method [3] 80.00 - 9.07 1.07 32.36
method [4] 80.00 - 5.28 1.76 25.58
method [5] 75.00 - 8.11 1.13 25.68

Table 2. Comparison between proposed algorithms and
patient-independent versions of other literature methods.
LDA stands for the original feature selection method using
LDA, LDA* for the method using the 3 best features and
LDA*-F stands for the fast version of the latter method. Sim-
ilar notations are used for LSVM.

Pat. Se(%) Sp(%) PPV(%) FP/h FP/seiz.

A1 85.71 83.33 33.33 0.17 1.71
A2 100.00 89.13 23.08 0.21 3.33
A3 100.00 93.10 50.00 0.10 1.00
A4 66.67 88.39 23.53 0.16 2.17

B1 100.0 84.21 50.00 0.33 1.00
B2 66.67 100.00 100.00 0.00 0.00
B3 66.67 62.50 66.67 0.11 0.33
B4 80.00 80.00 66.67 0.17 0.40

tot. 80.00 87.37 40.51 0.13 0.90

Table 3. Results using LDA with the 3 best features.

extraction, at the detection of every new heart rate sample,
the temporary linear phase can be evaluated to see if it can al-
ready be classified as a seizure or not. If the maximal filtered
slope doesn’t occur at the end of the linear phase (this is typ-
ically only the case in short linear phases), only the length of
the linear phase will change. Because the boundary between
both classes can be seen as a hyperplane in 3D space, an in-
crease in linear phase length can only lead to a seizure output
if it would have been a seizure in the original algorithm (see
Figure 4), so no extra FP’s are introduced by this procedure.
Table 2 shows the results of this improvement. A mean delay
of 31s is found in both classifiers, a gain of around 8.5s.

Table 2 also shows the results for the methods described
in Section 1. All the discussed methods originally required
manual parameter setting, but intensive automatic parameter
testing is used in order to find an approximation of the best
parameter values for the used dataset. This means that for the
original patient-specific algorithms [4, 5], the parameters are
no longer set for each patient separately, but for all patients at
once. In order to compare these algorithms with the proposed
one, their parameters are set so that they resulted in a similar



sensitivity as the proposed algorithm and an optimal PPV. In
order to remove the impact of the different used QRS detec-
tion algorithms, the method discussed in Section 3.1 is also
used in the ECG preprocessing step of these algorithms.

The methods using two moving windows [4,5] are able to
detect the seizures with an average detection delay of 25.58s
and 25.68s, which is faster than the proposed algorithm. The
number of FP’s per hour are however higher for these al-
gorithms compared to the proposed algorithm on the used
dataset. One of the main reasons for this is that these al-
gorithms rely on information of how fast the heart rate will
increase over a certain time. This information is very patient-
specific, so trying to set patient-independent parameter val-
ues introduces a lot of FP’s if sufficient sensitivity is required.
Method [3] results in less FP’s compared to the other methods
from the literature, due to more sophisticated analysis of the
linear phase. It introduces however a larger detection delay
due to the exponential phase analysis.

One of the main issues that remains, is the high number of
QRS detection errors near the end of the linear phase due to
strong EMG interference. A lot of important information gets
lost due to this errors. After manual correction of all the can-
didate heart rate signals, improved performance can be found
with a sensitivity of 90.0% and a PPV of 49.3% for LSVM.
Further investigation needs to be done in order to improve the
QRS detections in such noisy conditions. A possible solution
for this is the addition of other biomedical signals, which can
be used for noise removal (EMG) or improved QRS detection.

5. CONCLUSION AND FUTURE WORK

The procedure proposed in this paper can be used as aid dur-
ing the monitoring of temporal lobe epilepsy patients or as
(part of) a warning system. No training period is needed as
the algorithm is patient-independent. The used procedures
are easily computable, making it possible to use this approach
online with limited need for computational power. An impor-
tant issue that remains however is the need for more reliable
QRS detection during the strong ictal EMG noise interference
on the ECG signals. Further reduction of the detection delay
could also be a possible enhancement, but for this more than
only heart rate information might be needed.
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