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ABSTRACT
Congestive heart failure (CHF) is a cardiac disease associ-
ated with the decreases in cardiac output. As a measure to
predict sudden death, we propose a framework for discrimi-
nating CHF subjects from normal sinus rhythm (NSR). This
framework relies on matching pursuit decomposition to de-
rive a set of features, which are tested in a hybrid genetic al-
gorithm and k-nearest neighbor classifier to select the best
feature subset. The performance of the proposed framework
is analyzed using both Fantasia and CHF database from Phy-
sionet archives which are, respectively, composed of 40 NSR
volunteers and 29 CHF subjects. The proposed methodol-
ogy reaches an overall accuracy of 100% when the features
are normalized and the feature subset selection strategy is ap-
plied. We believe that our method can be extremely useful to
the clinician in primary health care as a support tool to dis-
criminate healthy from CHF subjects.

1. INTRODUCTION

Every year, congestive heart failure (CHF) related diseases
are responsible for the death of millions of people around the
world. At the clinical level, conventional methods to diagnose
heart failure are based on a combination of tests (i.e., Vasal-
vas manouver, electrocardiography, and chest radiograph) and
clinical history to determine whether or not the patient is af-
flicted with heart failure. Among the tests used (i.e., Framing-
ham, Duke, and Boston), the Boston criteria achieves sensi-
tivity of 50% and specificity of 78% [1]. Electrocardiography
methods, such as electrocardiogram (ECG), through the anal-
ysis of abnormal ECGs reach sensitivity of 81.14% and speci-
ficity of 51.01% [2]. As one can see, the current problem of
the conventional diagnose methods is the considerable differ-
ence between the percentage of correct and incorrect initial
diagnoses. A direct consequence is that false-positives will
cause unnecessary tests, whereas the false-negatives will have
late diagnostic.

The diagnoses reliability, however, might be increased if
the screening test of heart failure could be assisted by sig-
nal processing techniques and biomedical analysis. In the
past years, several works [3–6] have shown the possibility of
classifying subjects with heart failure. For instance, Işler and
Kuntalp (2009) using short-term heart rate variability (HRV)

intervals have shown that normalizing classical HRV and en-
tropy measures can lead to high levels of sensitivity (82.76%)
and specificity (100%). Kampouraki et al. (2009) suggested
that the classification accuracy of heartbeat time series can
be highly improved and even reach maximum accuracy if
support vector machines (SVM) are used. A joint wavelet
and SVM, for example, yield one of the highest success rate
(98.61%) during the task of classifying CHF from normal si-
nus rhythm (NSR) [5]. Thuraisingham (2009) using second-
order difference plot of RR intervals reported the best suc-
cess rate (100%), but at the cost of long-term RR intervals
(24 hours). Despite the number of sample test and method-
ology used, the proposed techniques have different degrees
of complexities. Specifically, they emphasize uncovering pat-
terns that could be used to predict sudden death caused by
heart failure. One interesting view of this problem is to find
invariant representations that could be considered representa-
tive patterns. In [7], for example, the authors show that it is
possible to segregate cardiopathies by scaling the behavior of
heartbeat intervals using wavelets. Herein, we propose to de-
rive invariant representations using a matching pursuit (MP)
decomposition of short-term HRV intervals. The objective,
therefore, is to use those features in a pattern classification to
segregate pathological from non-pathological groups. Thus,
the novelty of our work lies on decomposing HRV short-term
intervals into invariant representations, which are used to ex-
tract few features to discriminate CHF from NSR according
to a simple computational approach (MP algorithm).

2. METHODS

The heart rate variability is a straightforward data to access
the neuroregulatory control of the heart by deriving discrete
event series from the ECG. The advantages of analyzing the
autonomous nervous system (ANS) using HRV are related to
the computational simplicity and noninvasive aspects.

Several models of autonomic cardiac regulation are either
based on the analysis of input-output relationship [8,9] or the
idea of selective frequency extraction [10]. Altogether, they
often explore the standard frequency division suggested to an-
alyze the HRV signals [11]. A simple way to accomplish this
task is to use the Fourier transform or autoregressive methods
(AR). A drawback, however, is that Fourier and AR meth-



ods are not robust to nonstationarity. An alternative way has
been to use time and frequency transformations to overcome
nonstationarity. Essentially, one can relaxe the nonstationar-
ity problem by selecting a function that decomposes a sig-
nal into a sequence of bases using adaptive time-frequency
transform (ATFT) algorithms. This approach is accomplished
by scaling, translating, and modulating versions of the ba-
sis function, such that they represent the decomposed signal
with a well-defined time and frequency distribution. For in-
stance, ATFT algorithms have drawn a lot of attention in pat-
tern classification and signal compression due to its capacity
of reducing a higher dimension space to a few number of pa-
rameters. One of the most used ATFT algorithms exploits a
matching pursuit (MP) decomposition [12]. The MP frame-
work represents a signal x(t) as a linear combination of N
basis functions φ(t) drawn from an overcomplete dictionary
Φ = [φ1, . . . , φM ] where M � N , or alternatively

x(t) ≈
N∑
n=1

cnφn(t), φ(t) = Ae−π(
t−u
s

)2cos(w(t−u)+ϕ), (1)

where cn means modulatory coefficient, s scale, w frequency
modulation, u translation, ϕ phase, and A a normalization
factor, such that ‖φ(t)‖ = 1. Using Gabor functions have sev-
eral advantages. One may recall that Gabor functions have a
compact time-frequency localization and can yield a large va-
riety of shapes. The MP decomposes x(t) by finding the best
orthogonal projections amongst a set of basis functions from
a dictionary Φ that matches the structure of x(t). It results in
a finite number of basis functions organized in decreasing or-
der of energy. If the dictionary is a complete representation of
the signal, then x(t) =

∑N
n=1〈Rn−1x(t), φn(t)〉φn(t). One

of the intrinsic properties of MP algorithm is regarded to how
the signal is decomposed [13]. That is, because not all the
signals are composed of well-defined (coherent) components,
the MP tends to decompose first coherent underlying struc-
tures. And then, break random spike-like noise structures into
a set of basis functions whose time and frequency distribu-
tion are less compact than coherent ones. Figure 1 illustrates
an example of MP decomposition using CHF and NSR HRV
waveforms followed by their time-frequency representation.

2.1. Dataset and Main Features

We applied the MP algorithm to decompose HRV intervals
derived from CHF patients and NSR volunteers. The CHF
dataset is composed of 29 ECG long-recording signals (24
hours) acquired from patients without any control protocol,
whose age ranges from 34 to 79 years old. CHF is basically
classified by the New York Heart Association [14] into four
different classes, each one expressing how the CHF is evolved
in terms of physical activity. The NSR dataset is used as a
control group. It is composed of 40 ECG waveforms (two
hours) recorded from healthy volunteers during supine rest-
ing while watching the movie Fantasia (Disney, 1940). This

dataset was divided into two groups: young (21-34 years old)
and elderly (68-85 years old). Each group contains the same
amount of man and woman. Both CHF and NSR datasets
were, respectively, digitalized at 128 Hz and 250 Hz. The
beats from each ECG were carefully cataloged through unsu-
pervised systems followed by visual inspection of experts.

Comparing CHF and NSR energy decay rate, it is possi-
ble to observe (figure not shown) that CHF has a faster de-
cay when compared to NSR. Based on this observation, one
can use the mean energy decay as a feature to differentiate
between NSR and CHF. Thus, we define the mean energy de-
cay rate as the average of the residual energy, which is de-
rived from the difference between the signal being analyzed
and its reconstructed version at each iteration. We express
the residual energy rate in function of the iteration number
m as Emr (t, w) = Ex(t, w) −

∑m
n=1 |cn|2Wφn(t, w), where

Wφn
(t, w) is the Wigner-Ville of the φn(t) in the n-th MP

iteration with t representing time, w frequency.
A standard measure to analyze the reciprocal relationship

between the autonomic branches (SNS and PNS) is the ratio
between the LF and HF bands1 [11]. This ratio has been of-
ten used to show the degree of the modulatory mechanisms
acting into the heart. It has been reported, however, that pa-
tients with CHF have a remarkable reduction of energy at
HF bands following a high increase of energy at VLF bands.
Therefore, one may expect that dividing the energy at HF by
the VLF band causes an enhancement onto this ratio, such
that the ratio value for CHF tends to be lower than NSR.
The frequency ratio can be obtained by dividing the power
spectrum density of HF by the VLF. Herein, we combine the
φ(t) whose center frequencies are located at VLF, LF, and
HF to construct sub-signals and thus obtain their PSD. As-
suming that the x(t) can be decomposed as a linear combi-
nation of N basis functions and weigth coefficients. We can
express x(t) as x(t) ≈ c1φ1(t) + c2φ2(t) + . . . + cNφN (t),
where the energy of each component cnφn(t) is represented
by En = |cnφn(t)|2 with total energy Ex =

∑
nEn. If

the dictionary is complete, then the probability distribution
of x(t) can then be seen as the sum of individual probability
contributions given by each component as pn(x) = En/Ex.
Using the definition of entropy given by Shannon [15], the
entropy is obtained by Hw(p) = −

∑N
n=1 pn log2(pn).

The frequencies obtained from the structures that decom-
pose the HRV signal, can be used to reflect the frequency
distribution of the basis functions according to the HRV fre-
quency band division (i.e., VLF, LF, and HF). To capture these
patterns, we use a feature based on the frequency distribution
D represented by D(w) = Mcf (w)/M, where Mcf accounts
for the number of basis functions whose central frequency is

1High frequency, HF = {w|0.15 < w ≤ 0.40 Hz}, reflects both respi-
ratory sinus arrhythmia (RSA) and vagal modulation (PNS). Low frequency,
LF = {w|0.03 < w ≤ 0.15 Hz}, represents sympathovagal rhythms. Very
low frequency (VLF = {w|0.00 ≤ w ≤ 0.03 Hz}) band remains under
ongoing study due to the absence of well-known physiological mechanisms.
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Figure 1: Example. Heart rate
variability (zero mean) and its
joint time and frequency do-
main. Each “circle” (in right
side figures) represents a Ga-
bor function chosen by the MP
algorithm. (Top) Normal si-
nus rhythm. (Bottom) Conges-
tive heart failure signal. Both
time-frequency planes are nor-
malized to have the same en-
ergy levels (scale omitted for
better visualization).

either on VLF, LF, or HF bands. Moreover, M represents the
total number of basis functions (constraint to 30) that are used
to reconstruct the original signal. D(w) can be understood as
how the dynamical behavior of the HRV is captured by the
MP algorithm in relation to the frequency distribution of the
basis functions.

3. FEATURE SUBSET SELECTION

Feature subset selection (FSS) is a process that deals with
the problem of identifying quasi-optimal combination of
patterns-representing features among a large set of features.
In pattern classification problems, FSS has been used to
improve the overall accuracy of the classifier. It can be con-
sidered a special case of feature selection where each feature
is assigned to a weight value using binary strings. FSS is ba-
sically divided in filter or wrapper based-approaches. That is,
if there is dependency between the classifier and the learning
algorithm, FSS falls under the rubric of the filter approach,
otherwise it is called wrapper. In this work, we use a filter
approach based on genetic algorithms to select the most suit-
able subset of features to detect CHF from a control group
composed of NSR volunteers.

In the proposed system, we use a genetic algorithm (GA)
as learning algorithm. In brief, GAs use principles derived
from natural selection and genetics to perform randomized
search in complex landscapes. They have been largely used
to provide quasi-optimal solutions in optimization problems,
such as pattern recognition and machine learning [16].

A supervised classification system based on the k-nearest-
neighbor (KNN) rule describes a method where a set of N
labeled pattern vectors s1, s2, . . . , sN (previously assigned to
one of the M classes C1, C2, . . . CM ) is used to determine
which class Cı a new feature vector x belongs. That is, x ∈
Cı if D(sı,x) where D2

i = ‖x − si‖2. This model uses a
distance-weighted rule that does not depend on a true density
model [17]. Therefore, the likehood ratio is not used. The
classifier discrimination power can be increased by scaling
feature values between 0 and 1 using a MinMax procedure.

3.1. Validation and Performance Assessment

A faithful way of estimating the system performance is to use
a k-fold cross-validation. In this cross-validation version, the
dataset is segregated into k subsets with (almost) of equal
size, where k-1 subsets are used to train and the remaining
to test. This process is repeated until all the folds are tested
and their results averaged. Because the test set is disjoint of
the training samples and used just once, the independence be-
tween training and test sets is maintained.

Herein the dataset is composed of 69 samples and they
were divided into 23 folds, where 66 samples are used as
training set and three samples as test per fold time. The aver-
aged results of the test set are then used to evaluate the fitness
value θ, which tries to minimize the error rate of the classifier
according to, θ = 1− Correctly classified/Total.

Performance measures are results-based decisions tra-
ditionally organized into a confusion matrix. This matrix
describes if the samples assigned by the classifier to the
presence (true) or absence (false) of the disease are in fact
correct (positive) or incorrect decisions (false). The three
most common performance measures are: sensitivity [Se =
TP/(TP+FN)], specificity [Sp = TN/(TN+FP)], and accuracy
[Ac = (TP+TN)/(TP+TN+ FP+FN)], where TP, TN, FP, and
FN correspond respectively to true positive, true negative,
false positive, and false negative. Se, Sp, and Ac are, in
this order, connected to the indicative presence or absence of
illness, and general performance of the classifier.

The system is basically divided into two stages – prepro-
cessing and processing – where the second stage is composed
of three steps: 1) Feature extraction based on matching pur-
suit algorithm, 2) Feature subset selection using the KNN/GA
algorithm, 3) Overall Classification.

In the first step of processing, the resulting HRV signal
is decomposed using the MP algorithm and its reconstructed
signal obtained using 30 basis functions. Using the de-
composed basis functions 16 features were extracted, viz.,
residual energy {E(VLF), E(LF), E(HF), E}, PSD based en-
ergy concentration {VLF, LF, HF, HF/VLF, HF+LF}, entropy
{Hw(LF) and Hw(HF)}, and frequency distribution {D(LF),



D(HF), D(HF)/D(VLF), D(VLF)/D(LF), D(LF)/D(HF)}.
In the second step, we used the combined KNN classifier
and GA algorithm to simultaneous model optimization for
feature subset selection based on the Bioinformatics and
Genetic Algorithm Matlab Toolboxes (The Mathworks,
2007).The feature subset selection results are based on a
23-fold cross-validation method whose parameters settings
for the binary population size is 300, number of generations
is 100, crossover probability (Pc) of 0.7 with a double string
crossover, and mutation probability (Pm) of 0.05.

Once the stop criteria is reached – either by succeeding
the number of generations or when the fitness value does not
decrease in the last 30 generations – the joint KNN/GA op-
timization algorithm yields the best selected feature subset;
that is, the feature subset whose discriminative power has one
of the lowest error rate to discriminate CHF from NSR. The
third step consists of using the selected feature subset to vali-
date the performance of the yielded features.

4. RESULTS

We have tested the discriminative power of the features de-
rived from the MP decomposition with and without a strat-
egy to select the best feature subset. We also investigated
if scaling the features, which overcome exaggerated discrep-
ancies among the numeric values, could improve the overall
classification rate. The table 1 shows the results, namely ac-
curacy, sensitivity, specificity, and number of features (used
or selected). And, it is divided into different configurations
where the used k-nearest neighbors in the classifier are 1,
3, 5, 7, 9, 11, and 13. The configurations are organized in
(a) KNN classifier using all (16) features with feature scal-
ing, (b) KNN classifier using all (16) features without feature
scaling, (c) FSS based on KNN/GA algorithm with feature
scaling, and (d) FSS based on KNN/GA algorithm without
feature scaling. In configuration (a), the highest accuracy
(95.65%) was obtained with k = {3}, followed closely by
k = {1, 5, 7, 9, 11, 13}, whose accuracy is 92.75%. Config-
uration (b) yielded a lower accuracy rate (94.20%) than (a).
Configurations (c-d) show a substantial improvement of sys-
tem accuracy. Specifically, when compared to configuration
(a-b), the system improvement ranges from 4.35% to 26.09%.
For instance, the best accuracy is obtained in configuration
(c), where the system reached its maximum performance (Ac
= Se = Sp = 100%) using only five features. The selected
features for k = {5} are {D(HF)/D(VLF), D(LF), VLF, E,
Hw(HF)}. We show the numeric values of the computed fea-
tures to CHF and NSR after MinMax scaling in Fig. 2. De-
spite of their overlapping ranges, frequency distribution D(.)
feature was selected as a being a “good” discriminant between
NSR and CHF. Analysis of the individual features shows that
D(HF)/D(VLF) was spanned over 0.32 ± 0.23 (mean ± SD)
for CHF. The NSR, however, was spread in a much lower
range (0.28 ± 0.15). At first sight, D(LF) seems to have a
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Fig. 2: (Box plot) of features computed for NSR and CHF
heartbeat intervals. The central mark represents the median
for 40 volunteers (NSR) and 29 subjects (CHF), the edges of
the box are the 25th and 75th percentiles.

high discriminative power. In fact, their values are distribute
over 0.38± 0.24 for CHF against 0.61± 0.17 for NSR. It has
been also reported that energy-based measures derived from
HRV signals are strong discriminant features between NSR
and CHF. In our case, VLF and LF+HF were selected as sub-
set features. In one hand, VLF has values at 0.10 ± 0.19 for
NSR and 0.03±0.07 for CHF. On the other hand, LF+HF has
values at 0.18± 0.19 (NSR) and 0.02± 0.07 (CHF). Another
selected feature was the residual energy decay rate (E), which
is strongly dependent on the MP algorithm decomposition.
Their values are 0.08 ± 0.09 (CHF) and 0.27 ± 0.19 (NSR).
Nevertheless, the last feature selected by the joint KNN/GA
algorithm is the entropy based on MP decomposition for HF
bands with 0.15± 0.18 (NSR) and 0.02± 0.03 (CHF).

5. DISCUSSIONS AND CONCLUSIONS

One of the claimed challenges in discriminating CHF from
NSR using short-term intervals is that five minutes (or less)
may not be enough to fully characterize the day-life activity
of the heart. We have shown that using an adaptive decompo-
sition based on the MP algorithm, one can analyze the basis
functions used to decompose the signal instead of the HRV
signal itself. The novelty of this analysis lies in using the un-
derlying structural complexities of NSR and CHF as discrimi-
natory basis. That is, NSR requires a higher number of nonco-
herent structures than CHF to be decomposed, which causes
a slower decay of energy (E). Moreover, each basis function
corresponds to a specific position on the time and frequency
plane (see Fig. 1). Their frequencies distribution (D) carries
important information about the decomposed signal. We have



Algorithm With MinMax Normalization Without MinMax Normalization

Method k Ac(%) Se(%) Sp(%) Features Ac(%) Se(%) Sp(%) Features

KNN 01 92.75 78.26 100.0 16 73.91 78.26 71.73 16
KNN 05 92.75 78.26 100.0 16 89.85 82.60 93.47 16
KNN 09 92.75 78.26 100.0 16 91.30 82.60 95.65 16
KNN 13 92.75 78.26 100.0 16 94.20 86.95 97.82 16

KNN/GA 01 98.55 100.0 97.82 09 92.75 91.30 93.47 03
KNN/GA 05 100.0 100.0 100.0 05 94.20 91.30 95.65 08
KNN/GA 09 98.55 95.65 100.0 05 94.20 91.30 95.65 07
KNN/GA 13 98.55 95.65 100.0 06 94.20 86.95 97.82 07

Table 1: Classification Results. KNN (k-nearest-neighbor) with and without MinMax normalization. KNN/GA (genetic algo-
rithm) optimization with and without MinMax normalization. The results use a 23-fold crossvalidation where Ac (accuracy),
Se (sensitivity), and Sp (specificity) quantify the performance assessment of the classifier using N features.

also introduced a flexible way of measuring information from
the HRV signals. Computing entropy (Hw) based on the MP
algorithm allows one to estimate entropy directly from the de-
composed basis functions. This method represents a flexible
form to estimate entropy from the standard frequency division
(VLF, LF, and HF) than using multiresolution decomposition.

Another relevant problem, which is related to feature
selection, was circumvent by using a hybrid architecture
(KNN/GA). In this regard, we have shown that configuration
(c) with k = 5 has the lowest error rate, and one of the mi-
nor number of features among the other configurations. The
selected features by the KNN/GA algorithm yields a subset
selection containing five features with high discriminative
power. According to Fig. 2 and mean ± SD of the features,
one may organize selected features in decreasing order of dis-
criminative power as Hw(HF), E, LF+HF, VLF,D(LF), and
D(HF)/D(VLF). But, it should be noticed that the classifica-
tion results may vary according to the number of k-nearest-
neighbor used or different classifier methods.
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[5] E. D. Übeyli, “Ecg beats classification using multiclass sup-

port vector machines with error correction output codes,” Dig-
ital sig proc, vol. 17, no. 3, pp. 675–684, 2007.

[6] R. A. Thuraisingham, “A classification system to detect con-
gestive heart failure using second-order difference plot of RR
intervals,” Cardiology Research and Practice, 2009.

[7] P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus,
S. Havlin, H. E. Stanley, and A. L. Goldberger, “Scaling
behaviour of the heartbeat intervals obtained by wavelt-based
time-series analysis,” Nature, vol. 383, pp. 323–327, 1996.

[8] R. D. Berger, J. P. Saul, and R. J. Cohen, “Assessment of
atonomic response by broad-band respiration,” IEEE Trans.
Biomed. Eng., vol. 36, no. 11, pp. 1061–1065, 1989.

[9] K. H. Chon, T. J. Mullen, and R. J. Cohen, “A dual-input non-
linear system analysis of autonomic modulation of the heart
rate,” IEEE Trans. Biomed. Eng., vol. 43, pp. 530–544, 1996.

[10] R. Vetter, P. Celka, J. M. Vesin, G. Thonet, E. Pruvot,
M. Fromer, U. Scherrer, and L. Bernardi, “Subband model-
ing of the human cardiovascular system: New insights into
cardiovascular regulation,” Annals of Biomed. Eng., vol. 26,
pp. 293–307, 1998.

[11] Task Force of the ESC and the NASPE, “Heart rate variability:
Standards of measurement, physiological interpretation, and
clinical use,” Circulation, vol. 93, pp. 1043–1065, 1996.

[12] S. G. Mallat and Z. Zhang, “Matching pursuit with time-
frequency dictionaries,” IEEE Trans. on Sig. Proc., vol. 41,
pp. 3397–3415, Dec. 1993.

[13] K. Umapathy, S. Krishnan, V. Parsa, and D. G. Jamieson,
“Discrimination of pathological voices using a time-frequency
approach,” IEEE Trans Biomed Eng, vol. 52, pp. 421–30,
2005.

[14] The Criteria Committee of the NYHA, Nomenclature and Cri-
teria for Diagnosis of Diseases of the Heart and Great Vessels,
pp. 253–256, 9 edition, 1994.

[15] C. Thomas, Elements of Information Theory, Wiley-
Interscience, 2006.

[16] R. O. Duda, Pattern Classification, Wiley-Interscience, 2000.
[17] Rangaraj M. Rangayyan, Biomedical Signal analysis: A Case

Study Approach, IEEE Press, 2001.


