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ABSTRACT

Favorable propagation, defined as mutual orthogonality

among the vector-valued channels to the terminals, is one

of the key properties of the radio channel that is exploited

in Massive MIMO. However, there has been little work that

studies this topic in detail. In this paper, we first show that

favorable propagation offers the most desirable scenario in

terms of maximizing the sum-capacity. One useful proxy for

whether propagation is favorable or not is the channel con-

dition number. However, this proxy is not good for the case

where the norms of the channel vectors are not equal. For this

case, to evaluate how favorable the propagation offered by

the channel is, we propose a “distance from favorable propa-

gation” measure, which is the gap between the sum-capacity

and the maximum capacity obtained under favorable prop-

agation. Secondly, we examine how favorable the channels

can be for two extreme scenarios: i.i.d. Rayleigh fading and

uniform random line-of-sight (UR-LoS). Both environments

offer (nearly) favorable propagation. Furthermore, to analyze

the UR-LoS model, we propose an urns-and-balls model.

This model is simple and explains the singular value spread

characteristic of the UR-LoS model well.

1. INTRODUCTION

Recently, there has been a great deal of interest in massive

multiple-input multiple-output (MIMO) systems where a base

station (BS) equipped with a few hundred antennas simulta-

neously serves several tens of terminals [1–3]. Such systems

can deliver all the attractive benefits of traditional MIMO, but

at a much larger scale. More precisely, massive MIMO sys-

tems can provide high throughput, communication reliability,

and high power efficiency with linear processing [4].

One of the key assumptions exploited by massive MIMO

is that the channel vectors between the BS and the terminals

should be nearly orthogonal. This is called favorable prop-

agation. With favorable propagation, linear processing can

achieve optimal performance. More explicitly, on the uplink,

with a simple linear detector such as the matched filter, noise

and interference can be canceled out. On the downlink, with

linear beamforming techniques, the BS can simultaneously

beamform multiple data streams to multiple terminals without
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causing mutual interference. Favorable propagation of mas-

sive MIMO was discussed in the papers [4,5]. There, the con-

dition number of the channel matrix was used as a proxy for

how favorable the channel is. These papers only considered

the case that the channels are i.i.d. Rayleigh fading. However,

in practice, owing to the fact that the terminals have different

locations, the norms of the channels are not identical. As we

will see here, in this case, the condition number is not a good

proxy for whether or not we have favorable propagation.

In this paper, we investigate the favorable propagation

condition of different channels. We first show that under fa-

vorable propagation, we maximize the sum-capacity under a

power constraint. When the channel vectors are i.i.d., the

singular value spread is a useful measure of how favorable

the propagation environment is. However, when the chan-

nel vectors have different norms, this is not so. We also ask

whether or not practical scenarios will lead to favorable prop-

agation. To this end, we consider two extreme scenarios:

i.i.d. Rayleigh fading and uniform random line-of-sight (UR-

LoS). We show that both scenarios offer substantially favor-

able propagation. We also propose a simple urns-and-balls

model to analyze the UR-LoS case. For the sake of the ar-

gument, we will consider the uplink of a single-cell system.

2. SINGLE-CELL SYSTEM MODEL

Consider the uplink of a single-cell system where K single-

antenna terminals independently and simultaneously transmit

data to the BS. The BS has M antennas and all K terminals

share the same time-frequency resource. If the K terminals

simultaneously transmit the K symbols x1, . . . , xK , where

E
[

|xk|2
]

= 1, then the M × 1 received vector at the BS is

y =
√
ρ

K
∑

k=1

gkxk +w =
√
ρGx+w, (1)

where x = [x1, . . . , xK ]T , G = [g1, . . . , gK ], gk ∈ C
M×1

is the channel vector between the BS and the kth terminal,

and w is a noise vector. We assume that the elements of

w are i.i.d. CN(0, 1) random variables (RVs). With this as-

sumption, ρ has the interpretation of normalized “transmit”

signal-to-noise ratio (SNR). The channel vector gk incorpo-

rates the effects of large-scale fading and small-scale fading.

More precisely, the mth element of gk is modeled as:

gmk =
√

βkh
m
k , k = 1, . . . ,K, m = 1, . . . ,M, (2)



where hm
k is the small-scale fading and βk represents the

large-scale fading which depends on k but not on m. This

assumption is reasonable if the distance between the BS an-

tennas is much smaller than the distance between terminals

and the BS. For example, with half-wavelength antenna spac-

ing, at 2.6 GHz, a rectangular planar array has a physical size

of only about 60×60 cm. By contrast, the distance between

the terminals and the BS is typically hundreds of meters.

3. FAVORABLE PROPAGATION

To have favorable propagation, the channel vectors {gk}, k =
1, . . . ,K, should be pairwisely orthogonal. More precisely,

we say that the channel offers favorable propagation if

gH
i gj =

{

0, i, j = 1, . . . ,K, i 6= j

‖gk‖2 6= 0, k = 1, . . . ,K.
(3)

In practice, the condition (3) will never be exactly satisfied,

but (3) can be approximately achieved. For this case, we say

that the channel offers approximately favorable propagation.

Also, under some assumptions on the propagation environ-

ment, when M grows large and k 6= j, it holds that

1

M
gH
k gj →0, M → ∞. (4)

For this case, we say that the channel offers asymptotically

favorable propagation.

The favorable propagation condition (3) does not offer

only the optimal performance with linear processing but also

represents the most desirable scenario from the perspective of

maximizing the information rate. See the following section.

3.1. Favorable Propagation and Capacity

Consider the system model (1). We assume that the BS knows

the channel G. The sum-capacity is given by

C = log2

∣

∣

∣
I + ρGHG

∣

∣

∣
. (5)

Next, we will show that, subject to a constraint on G, under

favorable propagation conditions (3), C achieves its largest

possible value. Firstly, we assume {‖gk‖2} are given. For

this case, by using the Hadamard inequality, we have

C = log2

∣

∣

∣
I + ρGHG

∣

∣

∣
≤ log2

(

K
∏

k=1

[I + ρGHG]k,k

)

=

K
∑

k=1

log2

(

[I+ρGHG]k,k

)

=

K
∑

k=1

log2

(

1+ρ‖gk‖2
)

. (6)

We can see that the equality of (6) holds if and only if GHG

is diagonal, so that (3) is satisfied. This means that, given

a constraint on {‖gk‖2}, the channel propagation with the

condition (3) provides the maximum sum-capacity.

Secondly, we consider a more relaxed constraint on the

channel G: ‖G‖2F is given. From (6), by using Jensen’s in-

equality, we get

C ≤
K
∑

k=1

log2

(

1 + ρ‖gk‖2
)

=K · 1

K

K
∑

k=1

log2

(

1 + ρ‖gk‖2
)

≤Klog2

(

1+
ρ

K

K
∑

k=1

‖gk‖2
)

=Klog2

(

1 +
ρ

K
‖G‖2F

)

, (7)

where equality in the first step holds when (3) satisfied, and

equality in the second step holds when all ‖gk‖2 are equal.

So, for this case, C is maximized if (3) holds and {gk} have

the same norm. The constraint on G that results in (7) is

more relaxed than the constraint on G that results in (6), but

the bound in (7) is only tight if all {gk} have the same norm.

3.2. Measures of Favorable Propagation

Clearly, to check whether the channel can offer favorable

propagation or not, we can check directly the condition (3)

or (4). Other simple methods to measure whether the chan-

nel offers favorable propagation is to consider the condition

number, or the distance from favorable propagation (to be

defined shortly). These measures will be discussed in more

detail in the following subsections.

3.2.1. Condition Number

Under the favorable propagation condition (3), we have

GHG = Diag{‖g1‖2, · · ·, ‖gK‖2}. (8)

We can see that if {gk} have the same norm, the condition

number of the Gramian matrix GHG is equal to 1:

σmax/σmin = 1, (9)

where σmax and σmin are the maximal and minimal singular val-

ues of GHG.

Similarly, if the channel offers asymptotically favorable

propagation, then we have

1

M
GHG → D, M → ∞, (10)

where D is a diagonal matrix whose kth diagonal element is

βk. So, if all {βk} are equal, then the condition number is

asymptotically equal to 1.

Therefore, when the channel vectors have the same norm

(the large scale fading coefficients are equal), we can use

the condition number to determine how favorable the channel

propagation is. Since the condition number is simple to evalu-

ate, it has been used as a measure of how favorable the propa-

gation offered by the channel G is, in the literature. However,

it has two drawbacks: i) it only has a sound operational mean-

ing when all {gk} have the same norm or all {βk} are equal;

and ii) it disregards all other singular values than σmin and σmax.



3.2.2. Distance from Favorable Propagation

As discussed above, when {gk} have different norms or {βk}
are different, we cannot use the condition number to measure

how favorable the propagation is. For this case, we propose to

use the distance from favorable propagation which is defined

as the relative gap between the capacity C obtained by this

propagation and the upper bound in (6):

∆C ,

∑K
k=1log2

(

1+ρ‖gk‖2
)

−log2

∣

∣

∣
I+ρGHG

∣

∣

∣

log2

∣

∣

∣
I + ρGHG

∣

∣

∣

. (11)

The distance from favorable propagation represents how far

from favorable propagation the channel is. Of course, when

∆C = 0, from (6), we have favorable propagation.

4. FAVORABLE PROPAGATION: RAYLEIGH

FADING AND LINE-OF-SIGHT CHANNELS

One of the key properties of Massive MIMO systems is

that the channel under some conditions can offer asymptot-

ically favorable propagation. The basic question is, under

what conditions is the channel favorable? A more general

question is what practical scenarios result in favorable prop-

agation. In practice, the channel properties depend a lot on

the propagation environment as well as the antenna config-

urations. Therefore, there are varieties of channel models

such as Rayleigh fading, Rician, finite dimensional channels,

keyhole channels, LoS. In this section, we will consider two

particular channel models: independent Rayleigh fading and

uniform random line-of-sight (UR-LoS). These channels rep-

resent very different physical scenarios. We will study how

favorable these channels are and compare the singular value

spread. For simplicity, we set βk = 1 for all k in this section.

4.1. Independent Rayleigh Fading

Consider the channel model (2) where {hm
k } are i.i.d. CN(0, 1)

RVs. Note that, under a wide range of conditions, indepen-

dent Rayleigh model matches the behavior of experimental

data [6]. By using the law of large numbers, we have

1

M
‖gk‖2 → 1, M → ∞, and (12)

1

M
gH
k gj → 0, M → ∞, k 6= j, (13)

so we have asymptotically favorable propagation.

In practice, M is large but finite. Equations (12)–(13)

show the asymptotic results when M → ∞. But, they do not

give an account for how close to favorable propagation the

channel is when M is finite. To study this fact, we consider

Var
(

1
M gH

k gj

)

. For finite M , we have

Var

(

1

M
gH
k gj

)

=
1

M
. (14)

We can see that, 1
M gH

k gj is concentrated around 0 (for k 6= j
or 1 (for k = j) with variance proportional to 1/M .

Furthermore, in Massive MIMO, the quantity
∣

∣gH
k gj

∣

∣

2
is

of particular interest. For example, with matched filtering, the

power of the desired signal is proportional to ‖gk‖4, while the

power of the interference is proportional to
∣

∣gH
k gj

∣

∣

2
, where

k 6= j. For k 6= j, we have that

1

M2
|gH

k gj |2 → 0, (15)

Var

(

1

M2
|gH

k gj |2
)

=
M + 2

M3
≈ 1

M2
. (16)

Equation (15) shows the convergence of the random quanti-

ties {
∣

∣gH
k gj

∣

∣

2} when M → ∞ which represents the asymp-

totical favorable propagation of the channel, and (16) shows

the speed of the convergence.

4.2. Uniform Random Line-of-Sight

We consider a scenario with only free space non-fading line

of sight propagation between the BS and the terminals. We

assume that the antenna array is uniform and linear with an-

tenna spacing d. Then in the far-field regime, the channel

vector gk can be modelled as:

gk=eiφk

[

1 e−i2π d
λ
sin(θk) · · · e−i2π(M−1) d

λ
sin(θk)

]T

, (17)

where φk is uniformly distributed in [0, 2π], θk is the arrival

angle from the kth terminal measured relative to the array

boresight, and λ is the carrier wavelength.

For any fixed and distinct angles {θk}, it is straightfor-

ward to show that

1

M
‖gk‖2 = 1, and

1

M
gH
k gj → 0,M → ∞, k 6= j, (18)

so we have asymptotically favorable propagation.

Now assume that the K angles {θk} are randomly and in-

dependently chosen such that sin(θk) is uniformly distributed

in [−1, 1].1 We refer to this case as uniformly random line-of-

sight. In this case, and if additionally d = λ/2, then

Var

(

1

M
gH
k gj

)

=
1

M
. (19)

Comparing (14) and (19), we see that the inner products

between different channel vectors gk and gj converge to zero

at the same rate for both i.i.d. Rayleigh fading and UR-LoS.

1A more practical assumption is θk is uniformly distributed in [0, 2π].
However, it is difficult to perform analysis under this assumption, since some

expressions take on an intractable form. More importantly, antennas (such as

half-wavelength antenna spacing) have a directional response that discrimi-

nates against large angles of arrival, e.g., the regime where the two models

(sin(θk) uniformly distributed and θk uniformly distributed) are most differ-

ent. Thus, there may be no significant difference between these two models.
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Fig. 1. Singular values of GHG for i.i.d. Rayleigh fading.

Here, (M = 100,K = 10) and (M = 200,K = 20).

Now consider the quantity
∣

∣gH
k gj

∣

∣

2
. For the UR-LoS sce-

nario, with k 6= j, we have

1

M2
|gH

k gj |2 → 0, (20)

Var

(

1

M2
|gH

k gj |2
)

=
(M−1)M(2M−1)

3M4
≈ 2

3M
. (21)

We next compare (16) and (21). While the convergence

of the inner products between gk and gj has the same rate in

both i.i.d. Rayleigh fading and UR-LoS, the convergence of
∣

∣gH
k gj

∣

∣

2
is considerably slower in the UR-LoS case.

4.3. Urns-and-Balls Model for UR-LoS

In Section 4.2, we assumed that the angles {θk} are fixed

and distinct regardless of M . With this assumption, we have

asymptotically favorable propagation. However, if there exist

{θk} and {θj} such that sin(θk) − sin(θj) is in the order of

1/M , then we cannot have favorable propagation. To see this,

assume for example that sin(θk)− sin(θj) = 1/M . Then

1

M

∣

∣gH
k gj

∣

∣=
1

M

∣

∣

∣

∣

1− eiπ(sin(θk)−sin(θj))M

1− eiπ(sin(θk)−sin(θj))

∣

∣

∣

∣

=
1

M

∣

∣

∣

∣

1− eiπ

1− eiπ/M

∣

∣

∣

∣

→ 2

π
6= 0, M → ∞. (22)

In practice, M is finite. If the number of terminals K is

in order of tens, then the probability that there exist {θk} and

{θj} such that sin(θk)− sin(θj) ≤ 1/M cannot be neglected.

This makes the channel unfavorable. This insight can be con-

firmed by the following examples. Let consider the singular

values of the Gramian matrix GHG. Figures 1 and 2 show

the cumulative distributions of the singular values of GHG

for i.i.d. Raleigh fading and UR-LoS channels, respectively.
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Fig. 2. Same as Figure 1, but for UR-LoS.

We can see that in i.i.d. Rayleigh fading, the singular values

are uniformly spread out between σmin and σmax. However, for

UR-LoS, two (for the case of M = 100,K = 10) or three (for

the case of M = 200,K = 20) of the singular values are very

small with a high probability. However, the rest are highly

concentrated around their median. In order to have favorable

propagation, we must drop some terminals from service.

To quantify approximately how many terminals that have

to be dropped from service so that we have favorable propaga-

tion with high probability in the UR-LoS case, we propose to

use the following simplified model. The BS array can create

M orthogonal beams with the angles {θm}:

sin (θm) = −1 +
2m− 1

M
, m = 1, 2, ...,M. (23)

Suppose that each one of the K terminals is randomly and in-

dependently assigned to one of the M beams given in (23). To

guarantee the channel is favorable, each beam must contain at

most one terminal. Therefore, if there are two or more termi-

nals in the same beam, all but one of those terminals must be

dropped from service. Let N0, M − K ≤ N0 < M , be the

number of beams which have no terminal. Then, the number

of terminals that have to be dropped from service is

Ndrop = N0 − (M −K) . (24)

By using a standard combinatorial result given in [7, Eq. (2.4)],
we obtain the probability that n terminals, 0 ≤ n < K, are
dropped as follows:

P (Ndrop =n) = P (N0−(M −K)= n) = P (N0=n+M−K)

=

(

M

n+M−K

)

K−n
∑

k=1

(−1)k
(

K−n

k

)

(

1−
n+M−K+k

M

)K

. (25)

Therefore, the average number of terminals that must be
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Fig. 3. Capacity per terminal for i.i.d. Rayleigh fading and

UR-LoS channels. Here M = 100 and K = 10.
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Fig. 4. The probability that n terminals must be dropped from

service, using the proposed urns-and-balls model.

dropped from service is

N̄drop =

K−1
∑

n=1

nP (Ndrop = n) . (26)

Remark 1 The result obtained in this subsection yields an

important insight: for Rayleigh fading, terminal selection

schemes will not substantially improve the performance since

the singular values are uniformly spread out. By contrast, in

UR-LoS, by dropping some selected terminals from service,

we can improve the worst-user performance significantly.

5. EXAMPLES AND DISCUSSIONS

Figure 3 shows the cumulative distribution of the capacity

per terminal for i.i.d. Rayleigh fading and UR-LoS channels,

when M = 100 and K = 10. The “exact” curves are obtained

by using (5), and the “bound” curves are obtained by us-

ing the upper bound (6) which is the maximum sum-capacity

achieved under favorable propagation. For both Rayleigh fad-

ing and UR-LoS, the sum-capacity is very close to its upper

bound with high probability. This validates our analysis: both

independent Rayleigh fading and UR-LoS channels offer fa-

vorable propagation. Note that, despite the fact that the con-

dition number for UR-LoS is large with high probability (see

Fig. 1), we only need to drop a small number of terminals (2

terminals in this case) from service to have favorable propa-

gation. As a result, the gap between capacity and its upper

bound is very small with high probability.

Figure 4 shows the probability that n terminals must be

dropped from service, P (Ndrop = n), for two cases: M =
100,K = 10 and M = 200,K = 20. This probability is

computed by using (25). We can see that the probability that

three terminals (for the case of M = 100, K = 10) and

four terminals (for the case of M = 200, K = 20) must

be dropped is less than 1%. This is in line with the result

in Fig. 2 where three (for the case of M = 100, K = 10)

or four (for the case of M = 200, K = 20) of the singular

values are substantially smaller than the rest, with probability

less than 1%. Note that, to guarantee favorable propagation,

the number of terminals must be dropped is small (≈ 20%).

6. CONCLUSION

Both i.i.d. Rayleigh fading and LoS with uniformly random

angles-of-arrival offer asymptotically favorable propagation.

In i.i.d. Rayleigh fading, the channel singular values are well

spread out between the smallest and largest value. In UR-

LoS, almost all singular values are concentrated around the

maximum singular value, and a small number of singular val-

ues are very small. Hence, in UR-LoS, by dropping a few

terminals, the propagation is approximately favorable.

The i.i.d. Rayleigh and the UR-LoS scenarios represent

two extreme cases: rich scattering, and no scattering. In prac-

tice, we are likely to have a scenario which lies in between

of these two cases. Thus, it is reasonable to expect that in

most practical environments, we have approximately favor-

able propagation.

The observations made regarding the UR-LoS model sug-

gest that it may be worth investigating user selection schemes

for massive mimo in more detail.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlim-

ited numbers of base station antennas,” IEEE Trans. Wireless

Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[2] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in

the UL/DL of cellular networks: How many antennas do we

need?” IEEE J. Sel. Areas Commun., vol. 31, no. 2, Feb. 2013.

[3] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta,

“Massive MIMO for next generation wireless systems,” IEEE

Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[4] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and

spectral efficiency of very large multiuser MIMO systems,”

IEEE Trans. Commun., vol. 61, no. 4, Apr. 2013.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,

O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities

and challenges with very large arrays,” IEEE Signal Process.

Mag., vol. 30, no. 1, pp. 40–60, Jan. 2013.

[6] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive

MIMO in real propagation environments,” IEEE Trans. Wire-

less Commun., Mar. 2014, submitted.

[7] W. Feller, An Introduction to Probability Theory and Its Appli-

cations, 2nd ed. New York: Wiley, 1957, vol. 1.


