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ABSTRACT

In this work, we explore the problem of blind deconvolution
in the context of sparse signals. We show that the ¢y-norm
works as a contrast function, if the length of the impulse re-
sponse of the system is smaller than the shortest distance be-
tween two spikes of the input signal. Demonstrating this suf-
ficient condition is our basic theoretical result. However, one
of the problems of dealing with the {y-norm in optimization
problems is the requirement of exhaustive or combinatorial
search methods, since it is a non continuous function. In or-
der to propose an alternative for that, Mohimani et al. (2009)
proposed a smoothed and continuous version of the {y-norm.
Here, we propose a modification of this criterion in order to
make it scale-invariant and, finally, we derive a gradient-based
algorithm for the modified criterion. Results with synthetic
data suggests that the imposed conditions are sufficient but
not strictly necessary.

Index Terms— Blind Deconvolution, Smoothed /-
norm, Sparse Signals

1. INTRODUCTION

Deconvolution plays a fundamental role in signal processing.
Its applications vary from seismic reflection [1-4], ultrasonic
inspection [5], telecommunications [6] and optics. In this
work, we deal with blind deconvolution scenario, in which
the impulse response of the convolution system, as well as
the input signal, is unknown. This is an ill-posed problem
and some considerations are usually made for its regulariza-
tion [1,2,7,8].

In this paper, we explore the assumption that the input sig-
nal s(n) is sparse, i.e., composed of a few spikes of unknown
amplitude and position, separated by zero-terms [2—4].

For this, we propose a scale invariant version of the
smoothed /y-norm [9]. The {p-norm is a common metric
used to quantify sparse signals, since it corresponds to the
number of non-zero elements of a given vector. Formally
speaking, it is actually not a norm because it is not positive
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homogeneous. On the other hand, it satisfies the triangle
inequality and separates point properties.

The ¢y-norm of a vector s, denoted by ||s||o, is given by,
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where Eq(s;) is the indicator function on the set Eg = {s;|s; €
R,S,‘ = 0}

Having a system with finite impulse response (FIR), with
length smaller than the shortest distance between two spikes
in the input vector s, it is possible to demonstrate that the ¢-
norm is a constrast function. This is based on the idea that
the convolution of a sparse signal with the impulse response
of a linear system will result in a less sparse signal. Thus,
deconvolution can be performed by adjusting the coefficients
of a deconvolution filter in order to maximize the sparsity of
the deconvolved signal, e.g., by minimizing its £p-norm. Al-
though this idea has been widely explored by several methods,
a sufficient condition for that has not yet been demonstrated.

The major drawback of dealing with the fp-norm in op-
timization problems, is that it is a non-continuous function.
Then, the problem solution requires exhaustive or combinato-
rial search methods. Also, in some applications it is common
to consider nearly zero-terms as zeros, and this is not taken
into account in the £y-norm. In order to solve those prob-
lems, we propose a scale invariant version of the smoothed
lo-norm [9] and derive a gradient-based algorithm for this
modified criterion.

The paper is organized as follows: in Section 2 we for-
malize the deconvolution problem and state our notation. In
Section 3 we propose a new theorem in order to set the con-
ditions in which the fyp-norm works as a constrast function.
In Section 4 we present our simulation results and compare
the proposed approach with other techniques, such that Least
Squares (LS) [6], Prediction Error Filter (PEF) [1], Minimum
Entropy Deconvolution (MED) [2] and MED with an expo-
nential transformation [3]. Finally, in section 5 we state our
conclusions.



2. THE CONVOLUTION/DECONVOLUTION
PROBLEM

First, let us state the problem and set our notation. The
discrete-time noisy convolution model [6] is given by

x(n) = h(n)xs(n)+v(n),
L1
= Y ls(n—k)+v(n), )
k=0

where the symbol * stands for the discrete-time convolution,
s(n) is the input signal, x(n) is the output or observed sig-
nal, i(n) is the system impulse response and v(n) is the ad-
ditive noise. In vector notation, they are represented by s =
[S() S1 ... SNfl]T, X = [xo X1 ... fol]T, h= [/’10 /’l] Ce thfl]T
and v =[vy vy ... vy_1]7 respectively.

Deconvolution can be carried out by applying the ob-
served signal x(n) into an inverse filter that aims to recover
the original input signal:

w(n)xx(n),
Ly—1

= Z wix(n—k), 3)
k=0

y(n) =

where w(n) is the impulse response of the deconvolution filter
and y(n) is the recovered signal. In the noiseless case, perfect
deconvolution is said to be achieved when

y(n) = cs(n—d), @)

where ¢ is a constant scalar and d is a discrete-time delay
introduced by the deconvolution filter. In this case, the global
response of the system is given by
T
g(n) = h(n)*w(n) =10,...,0,c,0,...,0]", Q)
which is also known as the zero-forcing condition.
In the following, we present a theorem which states that,
under certain conditions, the fp-norm is a contrast function
for sparse blind deconvolution.

3. {p-NORM DECONVOLUTION

After stating our notation, we present a sufficient condition
for having the {p-norm as a contrast function for blind decon-
volution.

Theorem 1 Let us consider a signal s composed of a few
spikes of unknown amplitude and position, separated by zero
terms, and a signal g with at least one non-zero element and
length Lg smaller than the shortest distance between two
spikes in s. Then, the convolution of these two signals will
result in a signal y with ||y|lo > ||s|lo. Equality holds if, and
only if, g has a single spike.

Proof The assumption that the distances between the spikes
in s are greater than L, means that the system response to
each of these spikes does not overlap. Thus, the number of
non-zero elements of y is equal to the number of non-zero
elements of s times the number of non-zero elements of g,
ie.,

lI¥llo = liglollsflo- (6)

Since g has at least one non-zero element, then

[¥llo = llsflo, ©)

and equality holds if, and only if, g has the form
g=1[0,...,0,c,0,...,0], (8)
where c is a constant scalar different from zero. (]

In other words, convolution implies in reduce, or at most
conserve, the sparsity degree of the input signal.

In the blind deconvolution problem, we consider that g is
the impulse response of the global convolution-deconvolution
system. Let us also consider that the convolution system is
a possibly non-minimum phase, linear-time invariant (LTT),
FIR filter, the transfer function of which has no zeros on the
unit circle [8]. Finally, the deconvolution filter is assumed to
be of sufficient length, so that truncation effects can be ig-
nored.

Hence, in the following, we present the smoothed ¢y-norm
and the gradient-based algorithm.

3.1. The Smoothed /)-Norm

Usually, it is desirable to have continuous and smooth criteria
for optimization problems. However, the /p-norm is neither
continuous nor smooth, requiring exhaustive or combinatorial
search methods for its solution. Also, it does not take account
that small values can be considered as null-elements, which is
common in some real applications. For solving undetermined
system of linear equations, a common strategy is to replace
the fp-norm by the ¢;-norm [10], resulting in a continuous
function which is not smooth. In order to obtain a contin-
uous and smooth criterion, Mohimani et al. [9] proposed a
smoothed version of the /y-norm, defined by

N-1 —y?
Foy)=N-— Ze"P(zo’z)- ©)

This criterion, is based on an exponential transformation
proposed by Ooe and Ulrych in 1979 [3], which is given by

2
fo(yi) = 1—exp<_y" ) (10)
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In their work, they applied this transformation in a variant
form of the varimax criterion.



In advance with the commonly ¢;-norm criterion, it has a
tuning parameter ¢ which controls it smoothness, making it
equal to the ¢p-norm

Fo(y) =

and proportional to the ¢;-norm

yll?
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[[¥lo, for o =0, L

Fs(y) = foro >>y, 12)

where [|y|| = /15" ¥7-

However, blind deconvolution is an ill-posed problem and
some constraints are usually necessary for its regularization.
The most common is to impose that the input and the output
signal have the same power [8]. This constraint can be in-
corporated to the cost function by making it scale invariant,
which results in

_yl
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Since it is a non-convex function, initialization must be
taken into account. In Section 4, we show that good results
can be obtained by initializing the deconvolution filter with a
spike located accordingly to the phase of the convolution sys-
tem. For example, for minimum phase systems, best results
are obtained by initializing the deconvolution filter with a sin-
gle spike at the beginning of the system. For mixed-phase sys-
tems, it is advisable to initialize with a single spike located at
the middle of the system and in the case of a maximum phase
system, with a spike at the end.

3.2. A Gradient-Based Algorithm for Sparse Blind De-
convolution

A gradient-based algorithm for blind deconvolution can be
obtained by deriving the cost function with respect to the co-
efficients of the deconvolution filter. In this case,

aFG(Y) _ _Nil f(yi) J (zcgﬁ/;‘p) (14)
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Finally, the gradient is given by

dF5(y)
awk

(18)
and the adaptation of w by
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where normalization is performed in order to improve the
convergence of the algorithm [11] and m denotes the itera-
tion index. Also, to avoid local minima, we adopt the same
strategy used in [9] by adapting the parameter ¢ at each it-
eration. We start using a big value for 6 = Ogup and then,
after each iteration, we decrease its value of 6"t = g™ — §,
where § = w and oy, is the desirable value for ¢ after
M iterations. In this case, convergence can be assured for sig-
nificantly small values of § and p such that the minimization
of Fizm (y) implies in the minimization of £ 1 (y).

In the next section, we are going to present some results
obtained with the proposed method.

4. RESULTS

The proposed method, which we are going to refer as S/, is
going to be compared with several algorithms, such as:

e [east-Squares (LS) Filter [6]. It is a supervised technique
which is used in order to illustrate the best deconvolution
filter (in terms of least-squares) that is possible to be ob-
tained if the input sequence is available.

e Prediction Error Filter (PEF) or Wiener filtering [1]. It
is the classical method for blind deconvolution if the in-
put sequence is white and the convolution system is min-
imum phase. For non-minimum phase systems it is quite
useless.

e Minimum Entropy Deconvolution (MED) [2]. It is a clas-
sical method for blind deconvolution of sparse signals
based on the maximization of the varimax criterion.

e Minimum Entropy Deconvolution with an exponential
transformation (MED-ex) [3]. It is a method derived from
MED that uses the exponential transformation, given
by (10), in the varimax criterion. In this case, we used
o = max{y(n)}/2, as proposed in [3].

The major advantage of the MED and the MED-ex al-
gorithms are their fast convergence, which can be achieved

around 20 to 50 iterations [2, 3].



Results are presented in two different scenarios. First, a
scenario where the sufficient conditions, for having the £y-
norm as a contrast function, are respected. Second, a scenario
where these conditions are relaxed.

For both scenarios, we considered a non-minimum phase
system, which impulse response is illustrated by the second
signal, from top to botton, in Figure 1. Results are compared
in terms of the Pearson correlation coefficient, given by

YN i

- s 20
1511l 20)

where ¥ is the estimated signal with corrected lag delay.

4.1. Scenario 1

In the first scenario, the input signal is composed of three
spikes, equally separated by 60 null samples. The convolution
system is mixed-phase of length L, = 21 and for all methods
we considered a deconvolution filter of length L,, = 20. For
the proposed method, we considered pu = 0.01, M = 5000,
Osup = 4 and three different values for oy, given by 0.5, 2
and 4. Since it is known a-priori that the convolution system
is mixed phase, the initialization was made with a single spike
at the middle of the deconvolution filter, more specifically, in
the eleventh sample. In Figure 1 we illustrate the results ob-
tained with the different methods. From top to bottom: the in-
put signal, the impulse response of the system, the convolved
signal, the deconvolved signal obtained by: LS, PEF, MED,
MED-ex and S¢y with oj,s = 0.5, 2, 4. The Pearson correla-
tion coefficients are given by Table 1.
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Fig. 1. Results obtained for the first scenario. For description,
see the text.

Given Figure 1 and Table 1 it is possible to observe that
the results obtained with S{y with o,y = 2 and 4 and with
MED-ex, which are unsupervised methods, are comparable to
the LS approach, which is a supervised method. Also, these

Table 1. Pearson correlation coefficient for the first scenario.
LS PEF MED MED-x, 0 = Slo, Oint =

max{y(n)}/2 0.5 2 4
094 058 0.86 0.93 0.81 094 0.94

results are better than the PEF and MED. In this case, where
truncation effects are considerable high, it is possible to see
that small values for oy it is not so good, since it becomes
too polarized by the ¢p-norm, and, consequently, does not dis-
tinguish between small and big amplitudes.

In the following, in order to verify the robustness of the
proposed method, we present some results in more realistic
scenarios.

4.2. Scenario 2

In the second scenario, the input signal is modeled by a zero
mean, unit variance Bernoulli-Gaussian random variable,
with probability P, of non-zero occurrence, plus a Gaussian
random variable with zero mean and variance 6. The ad-
dition of the Gaussian random variable is made in order to
produce a more realistic signal, in which the spikes are sepa-
rated by nearly zero-terms and not exactly zero-terms. Also,
we considered the presence of additive white Gaussian noise
(AWGN).

For the input signal, it was considered three levels of spar-
sity (1) a signal with P, =0.1 and G)% =0.01; (2) a signal with
P, =0.2 and ze = 0.02; and (3) a signal with P, = 0.3 and
02 =0.03. Observe that, P, controls the degree of sparsity
of the signals. The bigger is its value, less sparse is the sig-
nal. Also, 6 controls the variance of the small coefficients
that are between the spikes given by the Bernoulli Gaussian
distribution. For the AWGN, it was considered four different
signal-to-noise ratios (SNR).

In order to obtain the average performance curves, in
terms of the Pearson correlation coefficient, for each algo-
rithm, it was performed 100 Monte Carlo simulations (MC).
These curves are illustrated by Figure 2. To improve the vi-
sualization, we are going to omit, from this figure, the results
obtained with S¢y with o = 0.5 and 4 and the results ob-
tained with the PEF. In addition, we are going to include the
Pearson correlation coefficient of the observed signal x(n),
which illustrates the performance if no deconvolution was
performed.

In Figure 3 we present the results of one realization of the
MC simulations, for P, = 0.3, GXZ =0.03 and SNR = 12dB.
From top to bottom: the input signal, the impulse response
of the system, the convolved signal, the deconvolved signal
obtained by: LS, PEF, MED, MED-ex and S¢; with G, =
0.5, 2, 4.

Finally, the Pearson correlation coefficients for one real-
ization of the MC simulations are given by Table 2.

Given Figure 2 it is possible to observe that, the decrease
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Fig. 2. Performance curves for the second scenario: (solid)
LS, (dashed) proposed method for oj,r = 2, (asterix) MED,
(square) MED-ex and (diamond) the convolved signal.
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Fig. 3. Results obtained for only one realization of the second
scenario. For description, see the text.

of the sparsity of the signal jeopardizes the results of the blind
algorithms, also, AWGN has a destructive effect, even for the
case where the input sequence is known (LS). Actually, this
is to be expected, since the input signal is being estimated
by a deconvolution filter. In the average, it is possible to
see that, the proposed algorithm, performs significantly better
than the classical MED and the MED-ex for the less sparse
cases. From Table 2 it is possible to see the difference be-
tween the methods considering only one realization of the MC
simulations and from Figure 3 it is possible to see the simi-
larity between the real input and the input estimated by the
proposed method.

Table 2. Pearson correlation coefficient for one realization of
the MC simulations of the second scenario, with P, = 0.3,
62 =0.03 and SNR = 12dB.
LS PEF MED MED-ex, 0 = Sly, Gint =
max{y(n)}/2 0.5 2 4
090 0.64 0.59 0.85 0.86 0.87 0.86

5. CONCLUSIONS

In this work, we explored the problem of blind deconvolu-
tion of sparse signals, based on the assumption that the con-
volution of a sparse signal with the impulse response of a
linear system results in a less sparse signal. In this context,
we proposed a theorem that states a sufficient condition for
that, which is also sufficient for the fp-norm to be a contrast
function. To perform deconvolution, we proposed a gradient-
based algorithm for the minimization of a scale invariant ver-
sion of the smoothed ¢y-norm.

Extensive results with synthetic data demonstrates the su-
periority of the proposed method, if compared with conven-
tional ones, and also indicates that the conditions imposed
about the signals are sufficient but not strictly necessary.
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