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ABSTRACT
We address the problem of restoration of images which have
been affected by impulse or a combination of impulse and
Gaussian noise. We propose a patch-based approach that ex-
ploits approximate sparse representations of image patches in
learned dictionaries. For every patch, sparse representation
in a dictionary is enforced by `1-norm penalty, and sparsity
of the residual is enforced by `0-quasi-norm penalty. The ob-
tained non-convex problem is solved iteratively by a combina-
tion of soft and hard thresholding, and a proof of convergence
to a local minimum is given. Experimental evaluation sug-
gests that the proposed approach can produce state-of-the-art
results for some types of images, especially in terms of the
structural similarity (SSIM) measure. In addition, the pro-
posed iterative thresholding algorithm could possibly be ap-
plied to general inverse problems.

Index Terms— Denoising, Impulse Noise, Sparse Repre-
sentation, Dictionary, Thresholding

1. INTRODUCTION

Image denoising is a fundamental task in image processing.
In this paper, we are interested in a special kind of noise,
which is a mixture of impulse and Gaussian noise. Generally,
several types of noise affect images: Poissonian, Gaussian
and impulse. Poisson-Gaussian noise mixture can generally
(when no data is lost, i.e. an image is not affected by impulse
noise) be transformed into pure Gaussian noise [1], or can be
treated by specialized methods [2]. However, the mixture of
Gaussian and impulse noise is quite challenging for denois-
ing. Two models of impulse noise that are used in the lit-
erature are salt-and-pepper noise and random-valued impulse
noise. Let us suppose that the dynamic range of an image is
[dmin, dmax]. Then, in the salt-and-pepper noise model, every
image pixel is replaced, with a given probability, with a value
dmin or dmax. The second model of impulse noise, which is
much more difficult to handle, assumes that a pixel value is re-
placed, again with a given probability, with a random value in
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the range [dmin, dmax]. Since detecting salt-and-pepper noise
is much easier than random-valued impulse noise, we concen-
trate on the more general scenario of random-valued impulse
noise in this paper.

Before introducing and describing our approach, we re-
view previous work. Most approaches for removing a mixture
of Gaussian and impulse noise generally start by detecting the
pixels corrupted by impulse noise. Then, after the influence
of these noisy pixels is reduced, some robust noise removal
method is used. In [3], a three-phase denoising approach was
proposed. Firstly, the outlier candidates pixels are detected
using a median-type filter. Then, the initial approximation
of a clean image is computed by a variant of the KSVD de-
noising algorithm [4, 5] using only pixels that are declared
as clean. Finally, a model enforcing small `1-norm of the
error and sparse representation (measured by `0-quasi-norm,
which is defined as the number of nonzero elements of its
argument) of image patches in learned dictionary is approxi-
mately solved. The dictionary is adaptively updated in every
step. Similar approaches were presented in [6–8]. However,
these papers simultaneously tackle the problem of blur in im-
ages (as noted in [9], this makes the problem of detection of
noisy pixels even easier, since the image is smoother).

In [9], a patch-based approach for removing impulse
noise, based on robust statistics, was proposed. This ap-
proach has three main steps. Firstly, the fraction of (impulse)
noise-corrupted pixels is estimated using some impulse noise
detector. Then, for every patch a set of similar patches
is found using some robust measure of similarity between
patches. Finally, an estimate of clean patch is found using ro-
bust statistical estimation on the set of similar patches found
in the previous step. This approach provided state-of-the-art
results, as demonstrated in [9]. We perform extensive experi-
mental comparison both with the approach in [9] and the one
in [3] in Section 3.

In [10], a model similar to the one proposed here was
used. Namely, `0 penalty on the noise was used, while the
total variation term was used as a regularization (therefore, a
global regularization was used, unlike patch-based, as used
in this paper). Another recent method is described in [11].



They used structured sparsity as a regularization by adapt-
ing the approach from [12] to impulsive noise removal and
blind inpainting. An approach for general inverse problems
in imaging was proposed in recent paper [13]. It uses a com-
bined image regularization model based on total generalized
variation and shearlets. Their approach, as demonstrated in
the paper, recovers both edges and fine details much better
than the regularization models based on total variation and
wavelets. Computational complexity of the algorithm wasn’t
discussed in much detail, similarly to all the approaches dis-
cussed in this section.

In this paper, an approach for removing impulse or a com-
bination of impulse and Gaussian noise is proposed. For each
patch, an optimization problem is formulated, where a sparse
representation in learned dictionary is enforced by `1-norm
penalty, and a sparse residual is enforced by `0-quasi-norm
penalty. The obtained non-convex problem is solved in an it-
erative procedure by combination of soft and hard threshold-
ing, with established convergence to a local minimum. In the
experimental section a detailed comparison against two state-
of-the-art methods is performed. Obained results show that
the proposed method produces good results for some types of
images, especially in terms of the structural similarity (SSIM)
measure (described later).

1.1. Notation and organization of the paper

Scalars are denoted by lowercase, vectors by bold lowercase,
and matrices by bold uppercase letters. Operators and sets
are denoted by uppercase or calligraphic letters. Transpose of
matrix D is denoted by DT . The estimation of x at iteration k
is denoted by x(k). i-th component of vector x is denoted by
xi. Componentwise multiplication (for vectors and matrices)
is denoted by ⊗.

In Section 2 we describe our approach. Numerical ex-
periments and comparison with state-of-the-art methods are
presented in Section 3. Conclusions are given in Section 4.

2. PATCH-BASED APPROACH USING A LEARNED
DICTIONARY

The overall process of denoising consists of several steps:
(offline) dictionary learning, impulse detection and iterative
minimization algorithm; these are described in the following
subsections.

2.1. Dictionary learning

In [3], dictionary for sparse representation was learned on the
damaged image itself, using a variant of the K-SVD algo-
rithm. However, in this paper we simply learn the dictionary
offline, on a training set of images of natural scenes. The dic-
tionary is then fixed during the image restoration process. The

dictionary is learned using the independent component anal-
ysis (ICA) on the set of patches extracted from the images
in the training set. We demonstrate that this approach gives
good results. Similar results could be obtained using some
other dictionary learning algorithm (for example, K-SVD, or
`1-based dictionary learning from [14]), but in our simula-
tions the dictionary learned using ICA consistently gave bet-
ter results in terms of the SSIM measure.

2.2. Impulse detection

We use the well known ROAD detector [15], as also used
in [9]. It can be described as follows. For every image pixel,
all absolute differences between that pixel and pixels in the
surrounding patch are computed. These differences are then
sorted, and the value of ROAD statistic at that pixel is ob-
tained by computing the sum of 4 smallest differences. When
the ROAD is above some threshold, the pixel is considered
as noisy. Parameters used in the experiments are described in
Section 3.

2.3. Image restoration algorithm

We propose the following formulation of the problem. For
every image patch, the following problem is solved:

min
x, f

1

2
‖Ω⊗ (u−Dx− f)‖22 + λ1 ‖x‖1

subject to ‖Ω⊗ f‖0 ≤ λ2. (1)

Here, u ∈ Rn denotes noisy image patch, D ∈ Rn×m is the
learned dictionary, Ω ∈ Rn is the vector indicating the posi-
tions of pixels not affected by impulse noise (as declared by
the ROAD detector) in the current patch, x ∈ Rm is a vector
of coefficients, f ∈ Rn is a sparse vector of pixels affected
by impulse noise and λ1, λ2 are parameters. λ1 is a param-
eter that depends on the level of Gaussian (bounded) noise,
while λ2 controls the level of impulsive (sparse) noise. Un-
constrained formulation of the problem is also possible (in
that case, λ2 has different interpretation); however, it seems
more natural to consider formulation (1) because here λ2 has
a simple interpretation: it bounds the number of pixels af-
fected by impulsive noise. Another approach would be to use
a global regularization on f (since the patches are generally
overlapping); however, the local approach used here is sim-
pler and gives good results. Among many possible formula-
tions, the `1 norm could also be used as a measure of sparsity
of noise; however, in our simulations better results were ob-
tained with (1).

Formulation (1) can be solved by a combination of soft
and hard thresholding. Let us suppose that the 2-norm of ma-
trix D is less than 1 (D can be normalized if necessary, so
that this assumption is realistic). Let us denote F (x, f) =



1
2 ‖Ω⊗ (u−Dx− f)‖22 . As in [16], we introduce the surro-
gate function

QL,x(k), f (k) (x, f) = F (x, f) +
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The surrogate function in (2) majorizes F (x, f) when L is
greater than the Lipschitz constant of the gradient of F [16].
Variables x and f inQL,x(k), f (k) decouple, sinceQL,x(k), f (k)

can (up to a constant) be written as

1

2

∥∥∥∥x− (x(k) +
1

L
DT

(
Ω⊗

(
u−Dx(k) − f (k)

)))∥∥∥∥2
2

+
1

2

∥∥∥∥f − (f (k) +
1

L

(
Ω⊗

(
u−Dx(k) − f (k)

)))∥∥∥∥2
2

.

Therefore, minimization of the surrogate function can be per-
formed separately with respect to x and f . By iteratively solv-
ing the following problems

x(k+1) = arg min
x

(
QL,x(k), f (k) (x, f) + λ ‖x‖1

)
(3)

f (k+1) = arg min
f

QL,x(k), f (k) (x, f)

subject to ‖Ω⊗ f‖0 ≤ λ2, (4)

the objective function in (1) is decreased. Minimizations in
(3) and (4) reduce to soft [17] and hard thresholding [18] op-
erators, respectively. It should be noted that we are not per-
forming alternating optimization.

2.4. Convergence of the iterative algorithm

The proof of convergence of the proposed algorithm is based
on the proofs of convergence of the iterative hard thresholding
[18] and the iterative soft thresholding (IST) [17] algorithms.
Due to lack of space, we only include a short sketch of the
proof here.

Proposition 1. The algorithm converges to a fixed point, or
equivalently, to a local minimum of the problem.

Sketch of the proof. We consider two cases separately:
in the first case, we suppose that there are infinitely many k
such that f (k) and f (k+1) have different support; in the second
case, we suppose that there is k∗ such that for all k > k∗ the
support of f (k) is fixed.

The first case is treated in the same way as in [18], so
we skip it here. In the second case, the algorithm reduces
to a kind of iterative soft thresholding where `1 penalty is
enforced only for one part of the vector. Since here we are
considering only finite-dimensional setting, the same proof
of convergence as presented in [17] is also valid in this case.

Table 1. Results of denoising for pure impulse noise in terms
of the SSIM measure.

[3] PARIGI [9] proposed

Lena 0.4 0.86 0.91 0.88
0.6 0.73 0.83 0.81

Bridge 0.4 0.75 0.76 0.76
0.6 0.58 0.55 0.59

Baboon 0.4 0.63 0.63 0.69
0.6 0.50 0.46 0.50

Barbara 0.4 0.75 0.92 0.81
0.6 0.60 0.82 0.68

Cameraman 0.4 0.80 0.93 0.92
0.6 0.57 0.86 0.75

Boat 0.4 0.82 0.83 0.82
0.6 0.67 0.70 0.71

Peppers 0.4 0.86 0.88 0.86
0.6 0.70 0.82 0.80

Goldhill 0.4 0.84 0.84 0.84
0.6 0.68 0.73 0.73

In [17], a weighted `1 norm
∑

i wi |xi| in (1) was used, with
the assumption wi > 0 for all i. However, Lemma 3.6 in [17]
is the only place where the assumption wi > 0, for all i,
was used; however, that lemma is trivially true in the finite-
dimensional case even without that assumption. Therefore,
the algorithm converges to a fixed point. 2

Of course, it is known that the convergence of the IST
can be very slow (accelerated version of IST was presented in
[16]). While it is not obvious how to improve the speed of the
proposed algorithm, another possible approach to solving (1)
could be to use alternating optimization (with respect to x and
f ). Recently, a general alternating optimization framework
(which applies to formulation (1)) was presented in [19], with
established convergence guarantees1. In our simulations, this
approach did not bring performance improvement.

3. EXPERIMENTS

We have compared the approach described in this paper with
recent state-of-the-art methods from [9] (named PARIGI) and
[3] described in the Introduction.

For measuring the quality of reconstructed images, we
have used Peak Signal-to-Noise Ratio (PSNR) and Structural
SIMilarity index (SSIM) [20]. It was demonstrated that the
SSIM is a metric that better corresponds to subjective quality
of visual perception.

The methods were tested on test images also used in [9]
and provided on their website2. For every image, 10 different

1We thank the anonymous reviewer for pointing out this paper
2http://perso.telecom-paristech.fr/˜delon/Demos/
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Table 2. Results of denoising for mixed Gaussian-impulse
noise in terms of the PSNR measure. For method [3], only
the results reported in that paper are included (see text).

[3] PARIGI [9] proposed

Lena

p = 0.1, σ = 5 34.98 34.72 35.00
p = 0.3, σ = 5 32.04 32.57 31.03
p = 0.1, σ = 15 30.85 30.31 30.76
p = 0.3, σ = 15 29.11 29.22 29.15

Bridge

p = 0.1, σ = 5 - 26.96 28.56
p = 0.3, σ = 5 - 25.45 25.26
p = 0.1, σ = 15 - 25.34 25.82
p = 0.3, σ = 15 - 23.38 23.90

Baboon

p = 0.1, σ = 5 - 24.81 25.11
p = 0.3, σ = 5 - 23.05 22.55
p = 0.1, σ = 15 - 23.63 23.15
p = 0.3, σ = 15 - 21.81 21.58

Barbara

p = 0.1, σ = 5 30.48 31.55 28.90
p = 0.3, σ = 5 25.92 29.28 25.42
p = 0.1, σ = 15 27.31 28.80 25.78
p = 0.3, σ = 15 24.55 27.33 24.00

Cameraman

p = 0.1, σ = 5 - 34.98 35.63
p = 0.3, σ = 5 - 31.40 30.08
p = 0.1, σ = 15 - 30.33 30.54
p = 0.3, σ = 15 - 28.59 28.33

Boat

p = 0.1, σ = 5 - 31.41 31.13
p = 0.3, σ = 5 - 28.81 27.59
p = 0.1, σ = 15 - 28.21 28.18
p = 0.3, σ = 15 - 26.57 26.30

Peppers

p = 0.1, σ = 5 - 33.90 30.11
p = 0.3, σ = 5 - 32.38 28.68
p = 0.1, σ = 15 - 30.28 28.39
p = 0.3, σ = 15 - 29.39 27.63

Goldhill

p = 0.1, σ = 5 - 32.60 33.10
p = 0.3, σ = 5 - 30.64 29.85
p = 0.1, σ = 15 - 29.08 29.36
p = 0.3, σ = 15 - 27.99 27.92

realizations of random noise were generated (as also used in
[9]), and the results presented in Tables 1 and 2 are mean
values over these 10 realizations (it should be said that the
variations in the results for different noise realizations were
small). Noise parameters (fraction of pure impulse noise and
standard deviation of Gaussian noise) were selected as in [9]
to enable fair comparison of methods.

Details about the parameters of the proposed method are
as follows. Dictionary was learned on a set of training images
using the FastICA algorithm [21] (dictionary was complete,
which was enough for good results). Patch size was set to 8×8
(possibly better results could be obtained with other sizes, but
in our experiments patch size was fixed). In the first phase
of the image restoration algorithm, an image was processed
4 times for decreasing sequence of thresholds in the ROAD
detector (in this way, we hope to detect noisy pixels possibly
missed by ROAD; on the other hand, selecting a small thresh-
old in ROAD would possibly also “detect” pixels that are not
noisy). In every step in the first phase, pixels which were de-
clared as noisy were discarded in computation (through Ω in

(1)), and after processing the whole image, only these pix-
els were replaced. In the second phase, overlapping image
patches were processed. Depending on the noise level, no
impulse detection was performed, or a high threshold for the
ROAD statistic was selected. After the second phase, all im-
age pixels were replaced by the approximations of their true
values obtained with the algorithm. Parameters λ1 and λ2
were chosen by coarse cross-validation and possibly slightly
better results could be obtained by tuning them more care-
fully. It should be said that we assumed that a rough estimate
of the fraction of impulse noise is available (the same assump-
tion was also used in [9]), and it was used for setting the value
of parameter λ2. L was set to 1 because this value resulted in
faster convergence of the algorithm, despite the theoretical
value being L = 2. The number of iterations was set to 3000.
Average time elapsed for the algorithm was about 30 min-
utes per image; it should be noted that the algorithm could be
parallelized which would make it much faster (the time men-
tioned above is the result of our “naive” implementation). Ta-
bles 1 and 2 summarize the results. For method [3] in the case
of mixed Gaussian-impulse, only the results reported in that
paper are included, since with our implementation we could
not find the setting of the parameters that works well.

The method presented here obtained, for some images,
comparable results with other two methods for pure im-
pulse noise. For mixed Gaussian-impulse noise, the pro-
posed method was generally inferior. However, the proposed
method gave good results (in terms of SSIM) for images rich
with fine details (Bridge, Baboon, Boat and Goldhill). Better
results for specific images could possibly be obtained with
more specialized dictionaries or by using several regulariza-
tions, as in [10, 22, 23]. It should be noted that none of the
referenced papers presented comparisons with recent state-
of-the-art method [9]. Also, in most papers (except [9]), only
impulse noise fractions below 50 percent were used.

Images were not included in this paper due to lack of
space, but all experiments can be reproduced using the code
available at author’s webpage3.

4. CONCLUSIONS

We have presented a simple iterative mixed soft-hard thresh-
olding algorithm for solving inverse problems with `0-`1 spar-
sity constraints, and its application to image restoration un-
der impulse noise. Image regularization used in this paper
is based on sparse representations in learned dictionary. In-
dependent component analysis was used for dictionary learn-
ing purpose. Although other approaches discussed in the pa-
per perform much better for some images and some prob-
lem settings, the approach proposed here performs at least
slightly better for some images. This agrees with the state-
ment from [9], namely that the performance of a denoising

3http://www.lair.irb.hr/ikopriva/marko-filipovi.
html



method depends on the image (or texture) class. We also note
that the algorithm presented here could possibly be applied to
general inverse problems like robust regression.
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