
COOPERATIVE USE OF PARALLEL PROCESSING WITH TIME OR
FREQUENCY-DOMAIN FILTERING FOR SHAPE RECOGNITION

Carlos Graca? Gabriel Falcao? Sunil Kumar† Isabel N. Figueiredo†

? Instituto de Telecomunicações, Dept. of Electrical and Computer Eng., University of Coimbra, Portugal
†CMUC, Dept. of Mathematics, University of Coimbra, Portugal

ABSTRACT
For many computer vision applications, detection of blobs
and/or tubular structures in images are of great importance.
In this paper, we have developed a parallel signal processing
framework for speeding up the detection of blob and tubular
objects in images. We identified filtering procedure as be-
ing responsible for up to 98% of the global processing time,
in the used blob or tubular detector functions. We show that
after a certain dimension of the filter it is beneficial to com-
bine frequency-domain techniques with parallel processing to
develop faster signal processing algorithms. The proposed
framework is applied to medical wireless capsule endoscopy
(WCE) images, where blob and/or tubular detectors are useful
in distinguishing between abnormal and normal images.

Index Terms— Object shape recognition, Convolution,
Frequency-domain filtering, Parallel processing, Wireless
capsule endoscopy

1. INTRODUCTION

In the field of computer vision, blob/tubular detection refers
to methods that are aimed at detecting clustered points in the
image that are either brighter or darker than the surrounding.
Detection of blob and/or tubular structures in images is an
important step in the analysis of a large-scale of scientific
data, as for example, detection of bleeding/blood regions in
WCE images [1, 2], nodule detection in thorax x-ray images
citesch, nuclei detection in microscopic zebrafish images [3],
enhancement of vascular structures [4,5], detection of lesions
in images of multiple sclerosis patients [6], and so on.

In this paper it is proposed a parallel signal processing
framework which accelerates significantly the performance of
particular blob and tubular detectors. These latter rely on the
eigenvalues of the Hessian of the processed input image [5],
which involve the calculation of second derivatives, at multi-
ple scales, using Gaussian filtering. We identified this filter-
ing process as being responsible for a large part of the global
processing time, which turns it a natural candidate for paral-
lelization.

Recently, graphics processing units (GPU) have shown
significant speedups for signal processing algorithms in med-

ical imaging areas that require intensive computation [7, 8].
This technology supports specialized parallel kernel develop-
ment and efficient signal processing libraries that suit well
into a variety of biomedical image processing applications.

We propose to cooperatively exploit time- or frequency-
domain signal processing techniques combined with more
efficient parallel processing. These algorithmic transfor-
mations allow producing faster code that can accommodate
multi-thread based parallelism with an appropriate use of the
system’s memory hierarchy and coalesced memory accesses
for performing the most compute-intensive procedures on the
GPU. We show that depending on the filter size, different
domains and architectures can be adopted. For example, for
large filters the GPU-based frequency-domain approach ob-
tains higher speedups, while for smaller filters the separable
time-domain approach on the GPU performs faster.

Finally, we show an application of the proposed parallel
blob and tubular detector algorithm in the medical field, for
bleeding/blood detection in WCE images [1, 2]. Note that
WCE examination of a patient produces approximately 56000
images. Hence, a major and relevant direct application of the
proposed framework is the acceleration of an automated WCE
image analysis. In addition, the proposed parallelized pro-
cedure can also be incorporated in many other applications
(see for instance [3–6, 9]), where blob and/or tubular detec-
tors might be used.

After this short introduction, the rest of the paper is struc-
tured as follows. Section 2 introduces the blob and tubular
detectors. Section 3 describes the parallelization of blob and
tubular detectors. An application to medical images is ana-
lyzed in Section 4, and finally some conclusions are given in
Section 5.

2. SHAPE-BASED OBJECT RECOGNITION

The definition of the blob and tubular detectors used herein
rely on appropriate functions that involve the Hessian eigen-
values of the input image and on a multiscale analysis ap-
proach. For a scalar image I : Ω ⊆ R2 → R, we define the
Hessian matrix at a point (or equivalently at a pixel location)

(x, y), and for a scale s, by

Hs(x, y) =

(
Isxx Isxy
Isxy Isyy

)
.

Here Isxx, I
s
xy and Isyy are the second-order partial deriva-

tives of I and the scale s is involved in the calculation of
these derivatives using Gaussian filtering. The Hessian ma-
trix describes the second order local image intensity varia-
tions around the selected point. Suppose λs,1 and λs,2 are two
eigenvalues of the Hessian matrix Hs. Note that at a point be-
longing to a blob region, these two eigenvalues have the same
sign (the sign is an indicator of the brightness/darkness of the
blob: if positive it is a dark blob on a bright background, and
if negative it is a bright blob on a dark background) and sim-
ilar magnitudes. If the point belongs to a tubular structure
(like a ridge) one of the eigenvalues is close to zero and the
others absolute value is large. Moreover the tubular structure
is bright (resp. dark) if the eigenvalue with highest absolute
value is negative (resp. positive) (see [5]). Without loss of
generality we assume that |λs,1|≤ |λs,2|.

Defining now

f1 = exp
(
−βF 2

s

)
and f2 =

(
1− exp

(
−α

(
λs,1

λs,2

)2
))

,

and motivated from [5], we define the blob (Bs) and tubular
(Ts) detectors (at each point of the domain), by

Bs =

{
0, if λs,1λs,2 < 0 or |λs,2 − λs,1|> δ
(1− f1)f2, otherwise,

(1)
and

Ts =

{
0, if λs,2 > 0,
(1− f1)(1− f2), otherwise. (2)

Here α and β are the parameters which control the sensitivity
of the functions and δ is the user chosen threshold.

In order to automatically detect blobs (or tubes) of differ-
ent sizes, a multiscale approach is necessary. The response
of the detector functions will be maximum at a scale that ap-
proximately matches the size of the structure (blob or tube) to
detect. Hence, we define the final detector functions as fol-
lows:

B = max
smin≤s≤smax

Bs and T = max
smin≤s≤smax

Ts,

where smin and smax are the minimum and maximum scales
at which the structures are expected to be found.

3. PARALLELIZATION OF THE SHAPE-BASE
OBJECT RECOGNITION PROCEDURE

The procedure for detecting blob and tubular structures in
images, described in Section 2, is implemented using time-

DGaussxx

DGaussxy

DGaussyy

Pre-processed image

Make kernel

coordinates and

2nd Gaussian

Derivatives

scale s Calculation of Hessian 2D Matrix

Filter Size: (6s+1)x(6s+1)

Ixx

Iyy

Ixy

Ixx scaled

Ixy scaled

Iyy scaled

Scale Values

Out=s² Ixx

Scale Values

Out=s² Ixy

Scale Values

Out=s² Iyy

Fig. 1: Block diagram explaining the computation of the Hes-
sian matrix for each scale s (Ixx, Iyy, Ixy are the notations for
the second-order partial derivatives of image I).

and frequency-domain approaches for calculating the filter-
ing procedure (involved in computing the Hessian matrix),
and it is also tested under different execution environments
and platforms. The function used to perform the filtering
in the time-domain (C/CPU) was released by NVIDIA [10]
and in frequency-domain (C/CPU), we used the optimized
FFTW3.3.3 library [11]. We find out that the vast majority
of time spent processing each image is being consumed by
the filtering process (see Tables 1 and 2), which is heavily
used for the calculation of the Hessian matrix. As depicted
in Fig. 1, three filters are applied for each scale s with a filter
size (6s+ 1)× (6s+ 1).

3.1. GPU parallelization

The parallelization of the procedure for detecting blob and
tubular structures in images, described in Section 2, is carried
out using the Compute Unified Device Architecture (CUDA)
parallel programming model, by exploiting the massive use of
thread- and data-parallelism on the graphics processing units
(GPU). CUDA allows the programmer to write in a transpar-
ent way, scalable parallel C code [12] on GPUs. When the
host launches a kernel, the GPU device executes a grid of
thread blocks, where each block has a predefined number of
threads executing the same code segment.

3.1.1. Parallelization with Separable 2D Filtering

We perform a benchmark of CUDA separable filtering (Time-
Domain) [10]. This version uses global memory, constant
memory and shared memory as described below in Algo-
rithm 1 .

3.1.2. Parallelization with FFT 2D Filtering

Following a frequency-domain strategy, we also perform a
benchmark of CUDA FFT2D filtering (Frequency-Domain)
[13]. This version uses global memory as described in Algo-
rithm 2 .

Version & platform TUBULAR exec. time(s) Filtering (% of TUB. exec. time) BLOB exec. time (s) Filtering (% of BLOB exec. time)
SEP Time-Domain (CPU) 4.0597 94.3720 4.2253 94.5556
Frequency-Domain (CPU) 0.5209 68.4008 0.5299 68.2204
SEP Time-Domain (GPU) 0.2372 0.5011 0.2419 0.4900
Frequency-Domain (GPU) 0.4149 7.4623 0.3773 7.6093

Table 1: Total computation times (in seconds) for TUBULAR and BLOB object-shape detection, and the time percentages (with
respect to the total time) of the filtering step, for the different versions and platforms. Tests done with (576× 576 pixel) WCE
images, applying a total of 12 filters (3 for each dimension) with sizes: 49× 49, 61× 61, 73× 73, 85× 85 for TUBULAR test
and 49× 49, 61× 61, 73× 73, 97× 97 for BLOB test (SEP is the notation for Separable Filtering).

Version & platform TUBULAR exec. time(s) Filtering (% of TUB. exec. time) BLOB exec. time (s) Filtering (% of BLOB exec. time)
SEP Time-Domain (CPU) 108.1980 98.18 113.221 97.9193
Frequency-Domain (CPU) 5.5730 74.4302 5.411 73.4984
SEP Time-Domain (GPU) 3.1628 6.1323 3.6096 5.66
Frequency-Domain (GPU) 2.2628 2.8915 2.2924 3.3429

Table 2: Total computation times (in seconds) for TUBULAR and BLOB object-shape detection, and the time percentages (with
respect to the total time) of the filtering step, for the different versions and platforms. Tests done with (1728×1728 pixel) WCE
images, applying a total of 12 filters (3 for each dimension) with sizes: 145 × 145, 181 × 181, 217 × 217, 253 × 253 for
TUBULAR test and 145× 145, 181× 181, 217× 217, 289× 289 for BLOB test (SEP is the notation for Separable Filtering).

Algorithm 1 Separable (SEP) Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 1D filter’s on CPU (Rows and Column)
3: (CPU→GPU memory transfer) Copy image and filter data to GPU

Global memory
4: (GPU memory transfer) Copy rows and columns filter data to GPU

Constant memory
5: (GPU memory transfer) Copy image data to GPU Shared memory
6: (convolve rows) Convolve image rows with row filter, each thread com-

putes just one pixel from reading N(filter lenght) neighbor pixels of im-
age by sharing memory between threads of the same block

7: (GPU memory transfer) Store results on buffer in GPU global memory
8: (GPU memory transfer) Copy buffer from GPU global memory to GPU

shared memory
9: (convolve columns) Convolve buffer columns with column filter, each

thread computes just one pixel from reading N(filter length) neighbor
pixels of buffer by sharing memory between threads of the same block

10: (GPU memory transfer) Store filtering results in Global memory
11: (GPU→CPU memory transfer) Copy filtering results to CPU memory

Algorithm 2 FFT2D Filtering CUDA Algorithm
1: (load image) Load image to CPU memory
2: (compute filter) Compute 2D filter on CPU
3: (CPU→GPU memory transfer) Copy image data and filter data to GPU

Global memory
4: (compute FFT2D) Convert image and filter to (Frequency-Domain) us-

ing ”cuFFT” FFT2D
5: (multiply”convolve”) Perform the point-wise multiplication of the FFT

of image and filter (Complex Number Multiplication), each thread pro-
cesses just one pixel, reading one entry from image and one entry from
filter to perform the two complex number multiplication

6: (compute IFFT2D) Convert result to (Time-Domain) using ”cuFFT”
IFFT2D

7: (GPU→CPU memory transfer) Copy filtering result data to CPU mem-
ory

4. APPLICATION TO MEDICAL IMAGES

In this section we apply the methodoloy proposed in this work
to wireless capsule endoscopy (WCE) images with 576×576

pixel and correspondent resized images with 1728 × 1728
pixel (in order to demonstrate the potential of this approach
for high resolution images).

A sequential version of blob and tubular detectors was uti-
lized in [1,2] for developing an automated algorithm to distin-
guish between abnormal (bleeding and/or blood) and normal
images. We refer the reader to [1] for more details.

The program is developed using CUDA driver 5.5 and
the C/C++ code compiled with GCC-4.6.3. The host sys-
tem has an Intel Core i7 950 CPU @ 3.07GHz and runs the
GNU/Linux kernel 3.8.0-31-generic. The GPU device con-
sists of a Geforce GTX 680 with 1536 CUDA cores.

The global filtering times, corresponding to the proposed
the blob and tubular detectors, for 576×576 WCE images are
shown in Fig. 2a), and for the resized 1728×1728 images are
shown in Fig. 2b). The Fig. 3 (a) displays two examples of
WCE images, having abnormalities, and columnn (b) shows
the correspondent scalar input images for the blob and tubular
detectors [1, 2]. The last column (c) exhibits the abnormal
regions successfully detected (bleeding, with the shape of a
blob, for the top image and blood, with the shape of a tube,
for the bottom image).

As depicted comparing Fig. 2a) and Fig. 2b), the time-
domain filtering on GPU performs faster than the frequency-
domain for 576 × 576 images and the frequency-domain fil-
tering on GPU performs faster for 1728 × 1728 images. The
size of the filter applied depends on the size of the objects
that we want to identify, consequently, larger images require
larger filters, assuming that images is of the same scene. For
smaller filters, the time-domain method is faster because this
method uses shared memory and the shared memory is fast
and seen by all threads within the same block. So we can
have several threads processing the same local data to opti-

49 61 73 85 97
10

−4

10
−2

10
0

Filter Size (NxN) pixel

E
x
e
c
u
ti
o
n
T
im

e
(s
)

Execution Time / Filter Size

TUBULAR −CPU Time

TUBULAR −CPU Freq.

TUBULAR −GPU Time

TUBULAR −GPU Freq.

BLOB −CPU Time

BLOB −CPU Freq.

BLOB −GPU Time

BLOB −GPU Freq.

(a) Execution time for images with 576×576 pixel.

145 181 217 253 289
10

−2

10
0

10
2

Filter Size (NxN) pixel

E
x
e
c
u
ti
o
n

T
im

e
(s

)

Execution Time / Filter Size

TUBULAR −CPU Time

TUBULAR −CPU Freq.

TUBULAR −GPU Time

TUBULAR −GPU Freq.

BLOB −CPU Time

BLOB −CPU Freq.

BLOB −GPU Time

BLOB −GPU Freq.

(b) Execution time for images with 1728×1728 pixel.

Fig. 2: Global filtering processing times for BLOB and TUBULAR shape detections, varying the filter size and platform. The
tests were performed on WCE images, applying 3 filters for each dimension.

mize memory bandwidth, but when filter size increases the
shared memory used increases too. Shared memory are typ-
ically small in size. Therefore, we need to reduce the block
size and this action increases the amount of data exchanges
with global memory and the number of memory accesses will
increase and slow down the process. On the other hand, in
the frequency-domain approach, for larger filters we can set a
fixed block size, thus using global memory more efficiently.

5. CONCLUSIONS

We have devised a parallel signal processing framework for
detecting blob and tubular structures in images which can be
helpful in many computer vision applications. The proposed
framework is applied to wireless capsule endoscopy images
for detecting bleeding/blood regions. The filtering process
represents the functionality with higher impact in the global
processing time, so we implemented several versions and we
conclude that time-domain approaches executing on GPU are
faster for small filters and that frequency-domain GPU meth-
ods are more efficient for larger filters. Through paralleliza-
tion of the algorithm, we obtain a speedup up to 17x on im-
ages with 576 × 576 pixel and up to 49x on images with
1728 × 1728 pixel. To the best of our knowledge, this is the
first GPU-accelerated algorithm to process WCE images in

order to speed up the findings of blood/bleeding regions. Fur-
thermore, this proposed approach has the potential to be used
in many other applications, as those mentioned in Section 1.

ACKNOWLEDGEMENTS

This work was partially supported by project PTDC/MATNA
N/0593/2012 from CMUC and FCT (Portugal) through the
European program COMPETE/ FEDER, and also by projects
PEst-C/MAT/UI0324/2011 and PEst-OE/EEI/LA0008/2013
from Instituto de Telecomunicações.

REFERENCES

[1] I. N. Figueiredo, S. Kumar, Carlos Leal, and Pe-
dro N. Figueiredo, “Computer-assisted bleeding detec-
tion in wireless capsule endoscopy images,” Computer
Methods in Biomechanics and Biomedical Engineering:
Imaging & Visualization, vol. 1, pp. 198–210, 2013.

[2] I. N. Figueiredo, Sunil Kumar, Carlos Leal, and Pe-
dro N. Figueiredo, “An automatic blood detection al-
gorithm for wireless capsule endoscopy images,” in
Computational Vision and Medical Image Process-
ing,VIPIMAGE 2013, João Tavares & Natal Jorge
(eds), 2014 Taylor & Francis Group, London, ISBN
978-1-138-00081-0 (ECCOMAS Thematic Conference

(a) Original WCE images.

0

20

40

60

80

0

5

10

15

20

25

30

(b) Pre-processed input images

0

2

4

6

8

10

x 10
−3

0.05

0.1

0.15

0.2

0.25

(c) Output detected bleeding/blood zones.

Fig. 3: From left to right: original input, intermediate images and detected regions of interest.

on Computational Vision and Medical Image Process-
ing), pp. 237–241.

[3] G. Li, T. Liu, J. Nie, L. Guo, J. Malicki, A. Mara, S. A.
Holley, W. Xia, , and S.T. Wong, “Detection of blob ob-
jects in microscopic zebrafish images based on gradient
vector diffusion,” Cytometry A, vol. 71, pp. 835–845,
2007.

[4] R. Manniesing, M. A. Viergever, and W. J. Niessen,
“Vessel enhancing diffusion: A scale space represen-
tation of vessel structures,” Medical Image Analysis,
vol. 10, no. 6, pp. 815 – 825, 2006.

[5] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A.
Viergever, “Multiscale vessel enhancement filtering,” in
Medical Image Computing and Computer-Assisted In-
tervention, Cambridge, MA, USA, 1998, pp. 130–137.

[6] G. Gerig, G. Szekely, G. Israel, and M. Berger, “De-
tection and characterization of unsharp blobs by curve
evolution,” in In Proc. of Information Processing in
Medical Imaging, 165-176, 1995.

[7] S.A. Mahmoudi, F. Lecron, P. Manneback, M. Benjel-
loun, and S. Mahmoudi, “GPU-based segmentation of
cervical vertebra in X-Ray images,” in Cluster Comput-

ing Workshops and Posters (CLUSTER WORKSHOPS),
2010 IEEE International Conference on, 2010, pp. 1–8.

[8] M. Martins, G. Falcao, and I. N. Figueiredo, “Fast
Aberrant Crypt Foci Segmentation on the GPU,” Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, May, 2013.

[9] A. M. R. Schilham, B. van Ginneken, and M. Loogr,
“Multi-scale nodule detection in chest radiographs,” in
Lecture Notes in Computer Science, vol. 2878, 2003.

[10] H. Lee, M. Harris, E. Young, and V. Podlozhnyuk, “Im-
age convolution with CUDA,” NVIDIA Corporation,
2007.

[11] Matteo Frigo and Steven G. Johnson, “The design
and implementation of FFTW3,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 216–231, 2005, Special issue
on “Program Generation, Optimization, and Platform
Adaptation”.

[12] V. Podlozhnyuk, M. Harris, and E. Young, “NVIDIA
CUDA C programming guide,” NVIDIA Corporation,
2012.

[13] V. Podlozhnyuk, “FFT-based 2D Convolution,”
NVIDIA Corporation, 2012.

