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ABSTRACT
Recently, diverse methods have been proposed for faithful
reconstruction of instantaneous rainfall maps by using re-
ceived signal level (RSL) measurements from commercial
microwave network (CMN), especially in dense networks.
The main lacking of these methods is that the temporal prop-
erties of the rain field had not been considered, hence their ac-
curacy might be limited. This paper presents a novel method
for accurate spatio-temporal reconstruction of rainfall maps,
derived from CMN, by using an extension to object tracking
algorithms. An efficient coherency algorithm is used, which
relates between sequential instantaneous rainfall maps. Then
by using Kalman filter, the observed rain maps are predicted
and corrected. When comparing the estimates to actual rain
measurements, the performance improvement of the rain-
fall mapping is manifested, even when dealing with a rather
sparse network, and low temporal resolution of the measure-
ments. The method proposed here is not restricted to the
application of accurate rainfall mapping.

Index Terms— Microwave Network, Object Tracking,
Estimation, Reconstruction, Rainfall Mapping.

1. INTRODUCTION

The use of RSL measurements from CMN, for rainfall moni-
toring and mapping, was proven to be beneficial for numerous
applications [1]. The well-known relation between the attenu-
ation A(dB/km) of a microwave signal strength and rainfall
R (mm/h), which is the main source for the signal’s power
degradation, is given by:

A = αRβ (1)

where the parameters α and β are, in general, functions of
link frequency, polarization, and drop size distribution [2].

An example of a typical attenuation during a rain event
is shown in Fig. 1. In the figure, the attenuation was mea-
sured on 18-January-2010, with 15 minutes time intervals and
0.1 dB of magnitude resolution, for a single 14 km link, op-
erating at a frequency of 19.8 GHz, in the center-south of
Israel. In the same figure, a rather sparse distribution of 36
available wireless microwave links (ML) in space, denoted as

black lines, is also shown. Where each link operate in typical
frequency of 18-23GHz, and length of 1-20 km. Most of the
RSL measurements are available in a temporal resolution of
15 minutes, with 0.1 dB of magnitude resolution.
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Fig. 1. Right: Example of 24 hours of measured attenuation
(dB) as a function of time. Left: The operating ML over an
area of 35X35 km2, provided by Cellcom ltd.

In the last decade some methods had been proposed for
using RSL measurements from commercial wireless ML for
the purpose of rainfall monitoring and mapping (e.g., [3, 4]
etc.). The main shortcoming of these methods is that non of
them had used the temporal properties of the rain field, hence,
their accuracy is not only limited but also heavily dependent
on the density of the CMN.

In 2009 Zinevich et al. offered to solve the differential
advection equation in order to reconstruct the rain field dy-
namics, mainly for the purpose of achieving a larger coverage
of the reconstruction, as detailed in [5]. The main lacking of
this approach is that the RSL measurements must be avail-
able in a very high temporal resolution (e.g., 1 minute), and
the deployed network is restricted to be rather dense, which
is not always possible. Moreover, due to the complexity and
non linearity of the differential equation, a numerical solu-
tion must be used. Hence, the solution may be numerically
unstable, non unique and singular, as detailed in [6].

For the analysis in this paper, the method proposed by
Liberman et al. in [7] for optimal recovery of instantaneous
rain fall maps, given measurements from CMN, was adopted.
Liberman et al. offered a technique which ensures an optimal
and unique recovery of instantaneous rainfall maps, if some
regularity conditions (mainly regarding the links distribution



in space) are satisfied. Moreover, in their work the authors
managed to prove that the proposed method is very accurate,
especially in a dense network. It should be noted that any
instantaneous rainfall mapping technique may be used for the
proposed application of accurate recovery of rainfall maps.

This paper presents a novel algorithm for accurate recov-
ery of rainfall maps and their dynamics given RSL measure-
ments. An approach, which constructs some model that re-
lates between sequential rainfall maps is offered, the method
uses an extension to the Coherency Sensitive Hashing (CSH)
algorithm. The CSH efficiently finds matching patches be-
tween sequential frames. The method relies on hashing (sim-
ilar patches are mapped to the same bin) and on image coher-
ence, in order to propagate good matches between sequential
frames. The decision on similar patches is obtained by defin-
ing some distant measure between candidate patches. The
CSH is fully detailed in the work done by Korman et al. [8].

Afterwards, the Kalman filter for object tracking is used
[9], which allows to optimally predict and correct the ob-
served rainfall estimates. Therefore, it is not only possible
to achieve higher spatial resolution, but also very high accu-
racy of the reconstruction, even when the temporal resolution
of the measurements is rather low (15 minutes), and the pro-
vided network is rather sparse.

By inspecting a significant rain event in the center south of
Israel, it is shown that the proposed method outperforms the
other rainfall mapping techniques (e.g., Radar, Zinevich et al.
method and the instantaneous mapping), almost uniformly,
when compared to actual rain measures in given locations.

This paper is organized as follows: Section 2 details the
method for spatio-temporal reconstruction of rainfall maps,
given RSL measurements from CMN . In Section 3 real data
results and performance evaluation of the proposed method
are demonstrated. This paper is discussed in Section 4.

2. THE SPATIO-TEMPORAL RECONSTRUCTION
The basic assumption of a space-time model for rainfall map-
ping is that the distribution of the rain intensity, in each in-
spected location, might be considered as a conserved quantity
over an intermediate time intervals (e.g., 15-30 minutes) [5].
While in [5] the rain field was assumed to slightly differ be-
tween sequential instantaneous rainfall maps, here this as-
sumption is not valid, due to the longer time intervals. Hence,
a different approach for the spatio-temporal reconstruction of
rainfall maps is vital.

For the discussion here, It and It+1 are regarded as the
two sequential instantaneous rainfall maps. In the sequel,
a model that relates between points of interest in It to their
matching points in It+1 is constructed, so that the following,
general, linear relation is satisfied:

[
xi;t+1

yi;t+1

]
=

[
a b c
d e f

]xi;tyi;t
1

 = H

xi;tyi;t
1

 (2)

Where [xi;t, yi;t]
T indicates the coordinate of the ith point of

interest in space, for each time step t. The unknown parame-
ters a, b, d, e stand for the rotation and scale factors, and c, f
are the translation factors. It should be noted that H in (2) is
sometimes regarded as a 2D affine relation matrix.

Though a linear relation might be limited, it was not only
shown in [7] that by correctly choosing H, (2) is in most cases
accurate, but also, linear relations are vastly used in meteo-
rological and hydrological applications (e.g., [10]) for mod-
elling precipitation propagation. Hence, it is plausible to as-
sume that kind of relation. Because our goal is to form an
accurate model which relates between each [xi;t+1, yi;t+1]

T

to its corresponding coordinate [xi;t, yi;t]
T , by denoting ~θ ,

[a, b, c, d, e, f ]T , (2) may be rewritten as:[
xi;t+1

yi;t+1

]
=

[
axi;t + byi;t + c
dxi;t + eyi;t + f

]
(3)

Now, by reforming (3), the following relation in terms of ~θ
might be derived, that is:[

xi;t yi;t 1 0 0 0
0 0 0 xi;t yi;t 1

]
~θ =

= B(xi;t, yi,t) ~θ =

[
xi;t+1

yi;t+1

] (4)

hence, for N corresponding matching points, i = 1, 2 . . . N .
One can see that the relation matrix can be formed from (4)
by estimating ~θ as the least squares (LS) solution. This is
of course possible if and only if there are at least 3 match-
ing points between the inspected sequential frames at time t
and t + 1, that is, there are at least 3 points of interest in
It that correspond to their matching points in It+1. Thus,
by denoting: B̃ = [BT (x1;t, y1,t) . . .B

T (xN ;t, yN,t)]
T and

~xt+1 = [x1;t+1, y1;t+1 . . . xN ;t+1 yN ;t+1]
T , the LS solution

may be obtained as follows:

θ̂ = (B̃T B̃)−1B̃T~xt+1 (5)

where θ̂ is the estimated ~θ, with dim(~θ) = 6X1, dim(B̃) =
2NX6, dim(~xt+1) = 2NX1.

In order to establish the desired relation matrix H, an
extension to the Coherency Sensitive Hashing (as described
in Section 1) method is proposed, so the required matching
points could be obtained. Therefore, an iterative algorithm is
proposed in order to extract the desired points in some pre-
defined area of interest, given two instantaneous sequential
rainfall maps, denoted as It and It+1. The novel algorithm is
detailed in Algorithm 1.

The proposed algorithm performs well, as can be ob-
served in Fig. 2, which shows the derived matching points
between two instantaneous sequential reconstructions of the
rain field, for a rain cloud system moving from south-west
towards north-east. The black lines in the figures indicate the
36 available operating links in the area of interest, which is



about 35X35 km2. The blue arrows indicate the direction of
the rain field dynamics in space, provided the detected points
of interest in It and their matching points in It+1.

Algorithm 1 Points Of Interest Detection
1: Set iter = 0 (iteration number) and set the Rain Inten-

sity Search (RIS0) to include only the dominant rain in-
tensities observed in It, that is RIS0 = [Max(It) −
ε, Max(It)]. Where ε is small enough with respect to
Max(It), e.g., ε =Max(It)/10. dim(RISiter) = 2.

2: Find the N coordinates of interest in It: [xi;t, yi;t] for
i = 1, 2...N , which correspond to the current RISiter
within the area of interest.

3: Use the efficient CSH algorithm between It and It+1, in
order to find the matching coordinates in It+1, which cor-
respond to the coordinates of interest in It.

4: Sort all matching points with respect to the direction in
which they were found (e.g., Eastern, Western etc.).

5: Form an histogram of all the matching points direction in
degrees (e.g., 45o - North East, 90o - North; etc.).

6: If a prior information is available, define a plausible range
(e.g., toward East - 0o to 90o) for the Main Direction,
which indicates the possible rain dynamics movement.

7: Include all the matching points which correspond to the
range of direction angles around the direction that re-
ceived the highest probability observed in step (5), which
is the Main Direction. The included points are the ”Cho-
sen Directions”, do not consider any matching points
which are not contained within the ”Chosen Directions”.

8: if N < 3 or the Main Direction is not inside the range
defined in step (6) (e.g., for only Eastern directions, the
Main Direction may vary between 0o to 90o); then

9: iter = iter + 1.
RISiter = [RISiter−1[0]− ε, Max(It)].

10: if RISiter[0] ≈ 0 ; then
11: No Matching points were detected
12: return
13: else
14: Go to step (2).
15: end if
16: else
17: Save the obtained matching points from step (7).
18: return .
19: end if

The histogram in Fig. 2 is the histogram for the directions
obtained from all the points of interest in It (i.e., step (3) in
Algorithm 1), which accounts for a total of 189 points.

As mentioned before, due to a prior information regarding
the rain field movement towards east, the range for the main
direction from step (6) was assumed to vary from 0o to 90o.
According to step (7) in Algorithm 1, 169 points of interest
were considered in the analysis (N � 3), these correspond to
the surrounding of the Main Direction, which observed the

highest probability (∼ 65o). From Fig. 2, one can see that a
small cloud (30.05oN, 34.4oE) was also present in It+1. If
not for step (7), false directions would have been obtained, so
errors would surely be observed in the dynamical recovery.

The example shown in Fig. 2 was obtained from the 18-
Jan-2010 rain event occurred in the south-center of Israel, for
RSL data received from 36 operating ML. The ML distribu-
tion in the area of interest is considered to be rather sparse.

Fig. 2. Example of the proposed algorithm (with only 3 itera-
tions), for finding matching points for two sequential rainfall
maps. Top left: the reconstructed rain field from links at 15:15
- It. Top right: Zoom in around the highest rain rate intensi-
ties observed in It, where each direction point is depicted by a
blue arrow. Bottom left:the reconstructed rain field from links
at 15:30 - It+1. Bottom right: the direction histogram.

After deriving the space-time model of the rain field (de-
noted as H in (2)) between the inspected sequential rainfall
maps, the estimated model was applied on all the coordinates
in the area of interest. Next, the dynamically propagated esti-
mates of the rainfall spatial distribution are predicted and cor-
rected while using the Kalman filter, according to the newly
observed data, as described in Section 2.1.

2.1. The reconstruction correction

The use of Kalman filter for object tracking is an efficient data
assimilation method that explicitly accounts for the dynamic
propagation of errors in the model, [9]. For linear models
(as was assumed here), the Kalman filter provides an optimal
estimate of the state of the system, in terms of minimum esti-
mation error covariance of both the model and observations.

The Kalman filter estimates the spatio-temporal rainfall
distribution from a set of non-uniform (possibly sparse) arbi-
trary network of microwave links. The filter combines past
samples with new observations according to the derived rela-
tion in (2). Thus, the system of equations, which describes



the state and the measurement equations, are given by:

~xt = H~xt−1 + ~wt (6a)
~zt = M~xt + ~qt (6b)

Where ~xt indicates the current inspected frame coordinates
in the area of interest. H is the relation matrix between se-
quential frames (as defined in (2)), ~zt indicates the current
measurement (denoted as the space coordinates in the area of
interest), therefore, M is regarded as the identity matrix.

The noises ~wt, ~qt reflect the state noise and the measure-
ment noise, respectively. These noises are regarded as un-
correlated and zero mean noises (i.e., E{~qt} = E{~wt} =
~0; E{~qt ~wTt } = 0). The autocorrelation matrix of ~wt might
be estimated from the state equation defined in (6a), that is:
R , E{~wt ~wTt } ≈ (~xt −H~xt−1)(~xt −H~xt−1)

T /M . The
autocorrelation matrix of ~qt (denoted as Q) is defined to be
a diagonal matrix with standard deviation of some defined
(small enough) threshold, that is, each measurement might
have an error of some maximum threshold for each one of the
inspected coordinates (e.g., 0.1 km). These noises stand for
the inaccuracies that may have occurred in the estimation of
the dynamical model when using Algorithm 1.

Now, the Kalman equations can be solved. By using a
prediction and correction scheme, a dynamical estimate for
~xt, denoted as x̂t, of the rain field can be acquired, given the
newly observed, and past, data. The estimates are obtained
by minimizing the overall estimation error, which is defined
as: Pt = E{(~xt − x̂t)T (~xt − x̂t)}. Thus, the estimation is
achieved by iteratively applying the prediction and correction
steps, until a solution is reached, as shown in Table. 1:

Table 1. The Kalman filter for object tracking.
Prediction Correction

x̂′t+1 ≈ Hx̂t Kt = P′tM
T (MP′tM

T +R)−1

P′t+1 = HPtH
T +Q x̂t = x̂′t +Kt(~zt −Mx̂′t)

Pt = (I−KtM)P′t

Where Kt is the Kalman gain and I is the identity matrix.

3. RESULTS AND PERFORMANCE ANALYSIS

In this section the use of the proposed method from Sec-
tion 2 is demonstrated. The reconstruction of the rainfall map
is compared with that of the radar, which is considered as
one of the most renowned methods for rainfall mapping to-
day. Moreover, the affect the method has on the achieved per-
formance of the rain field reconstruction is also investigated,
when compared to actual rain measures in the inspected area,
along with other rainfall mapping techniques, i.e.: the radar,
instantaneous mapping and Zinevich et al. method.

Fig. 3 demonstrates the rainfall mapping results when us-
ing the proposed method. In the inspected event, links data
were observed for 1.5 hours (15:00-16:30), with temporal res-
olution of 15 minutes, that is, a total of 7 instantaneous rain-
fall maps. Hence, the proposed novel method was applied on

each sequential frames (e.g., 15:00 and 15:15 frames). In the
figure, the reconstructions of the proposed method using ML
and the radar are shown. Regarding the radar’s images, the
70 km arc indicates the radius distance from the radar loca-
tion at Bet-Dagan (32.0oN , 34.8oE).

Fig. 3. Recovery of rainfall maps during a rain event. The re-
constructions of the proposed method using ML (black lines)
and the radar are shown at: 15:00, 15:45 and 16:30 (from top
to bottom). Left: The proposed method. Right: The radar.

The inspected region in Fig. 3 consists of a rather sparse
ML distribution, comprising of only 36 operating ML in an
area of 35X35 km2. Rain gauges measurements, which are
considered as ground truth rain measures, are available in a
temporal resolution of 5 minutes, which are provided in 20
different locations within the inspected area. Each rain gauge
provides actual rain rate measure in an area of about 1m2.

Radar maps are also available in a temporal resolution of
5 minutes. Both the rain gauges and radar maps are provided
by the IMS. Thus, due to the different time resolution of each
source, only the common times are considered when evaluat-
ing the different cost functions:

RMSE = (
1

ÑM̃

∑M̃

j=1

∑Ñ

i=1
(x̂i,j − xi,j)2)

1
2 (7a)

ρ =

∑M̃
j=1

∑Ñ
i=1(x̂i,j − µx̂)(xi,j − µx)

(
∑M̃
j=1

∑Ñ
i=1(xi,j − µx)2

∑M̃
j=1

∑Ñ
i=1(x̂i,j − µx̂)2)

1
2

(7b)

RE =
1

ÑM̃

∑M̃

j=1

∑Ñ

i=1

|x̂i,j − xi,j |
xi,j

(7c)

Where in (7): ρ is the correlation measure, the RMSE (in



mm/h) is the Root Mean Square Error, and RE is the Rel-
ative Error. µx̂ and µx are the mean spatial rain rates of the
estimated rain measurements (x̂ij) and the true measurements
(xij), respectively. The index j refers to each time step (total
of M̃ time steps), while index i refers to the spatial coordinate
(total of Ñ inspected coordinates). The performance evalua-
tion of the inspected measures in (7) is detailed in Table. 2.

Table 2. Performance analysis of the instantaneous, proposed
method, the advection model and the radar reconstructions.

Method Correlation RMSE RE
Instantaneous 0.721 14.2 60%
Proposed Method 0.873 8.7 34%
Advection 0.645 17.8 65%
Radar 0.752 13.4 55%

4. DISCUSSION

This paper explores the concept of recovering accurate re-
constructions of rainfall maps and their dynamics, using
microwave links observations and their assimilation into a
spatio-temporal model. The performance of the latter has
been assessed by comparing the reconstructions of the instan-
taneous mapping, the radar, the dynamic recovery using the
advection model (Section 1) and the proposed method to 20
actual rain measure instruments (rain gauges), in center-south
of Israel, in an area of 35X35 km2.

The instantaneous technique used in this paper for rain-
fall mapping may yield reconstruction errors, especially in a
sparse network, thus providing a quite poor rainfall recovery,
as shown in Table. 2. Regarding the proposed reconstruc-
tion technique, the method is constrained to a linear model,
which is assumed to hold for the space-time model of the rain-
fall mapping and its dynamics recovery, though this kind of
model may not necessarily hold. Hence, more complicated
non-linear models, with the use of the extended Kalman filter
(EKF), might be considered in the future.

As expected, Zinevich et al. method using the advec-
tion model for dynamical reconstruction of rainfall maps
showed poor results, with respect to the radar and the pro-
posed method. As explained before, the main reason is that
this method requires high temporal resolution of the RSL
measurements, along with high spatial resolution of the ML
distribution in space, which is not always available in general
and in this research in particular.

Regarding the radar’s performance, an improvement of
about 3% was achieved in the correlation measure, when
compared to the instantaneous method. The proposed recon-
struction technique not only showed an impressive improve-
ment of more than 15% in all measures , when compared
to the instantaneous method, it also outperformed the radar
with a 12% improvement in all measures. Moreover, the
ability of the method to capture the rainstorm dynamics and
to track the rainstorm changes was shown in Fig. 3, where the
reconstruction was compared with that of the radar.

Finally, dense CMN at high temporal and spatial resolu-
tions are not available everywhere. It is clear that the quality
of the rain field reconstruction, at every point, depends on the
availability of nearby links. Nevertheless, even when sparse
network is deployed in space, the proposed approach man-
aged to achieve the most accurate reconstruction.

Due to the nature of the problem presented in this paper
for accurate recovery of rainfall maps using object tracking
extensions, an interesting comparison was also conducted,
which compared the proposed method to the well-known op-
tic flow Horn-Schunk method for object tracking, [11]. The
latter managed to achieve a correlation of about 82%, which
is lower than the one achieved by the proposed method. Thus,
proving again the unwavering ability of the technique.

The method proposed here was used for the application of
accurate recovery of rainfall maps, though it may also be used
for other object tracking or video processing applications.

REFERENCES

[1] H. Messer, A. Zinevich, and P. Alpert, “Environmental
monitoring by wireless communication networks,” Sci-
ence, vol. 312, no. 5774, pp. 713, 2006.

[2] A.R. Jameson, “A comparison of microwave techniques
for measuring rainfall,” Journal of Applied Meteorol-
ogy, vol. 30, no. 1, pp. 32–54, 1991.

[3] O. Goldshtein, H. Messer, and A. Zinevich, “Rain rate
estimation using measurements from cmn,” IEEE T.
Signal Processing, vol. 57, no. 4, pp. 1616– 1625, 2009.

[4] A. Overeem, H. Leijnse, and L.R. Uijlenhoet, “Country
wide rainfall maps from cmn,” PNAS, March 2013.

[5] A. Zinevich, H. Messer, and P. Alpert, “Frontal rainfall
observation by cmn,” Journal of Applied Meteorology
and Climatology, vol. 48, no. 7, pp. 1317–1334, 2009.

[6] W. Hundsdorfer and J.G. Verwer, Numerical solution of
time-dependent advection-diffusion-reaction equations,
vol. 33, Springer, 2003.

[7] Y. Liberman, “Optimal recovery of rain field maps us-
ing wireless sensors network,” M.Sc. Thesis, Tel Aviv
University, 2013.

[8] S. Korman and S. Avidan, “Coherency sensitive hash-
ing,” in IEEE International Conference on Computer
Vision (ICCV). IEEE, 2011, pp. 1607–1614.

[9] G. Bishop and G. Welch, “An introduction to the
kalman filter,” Proc of SIGGRAPH, Course, vol. 8, pp.
27599–3175, 2001.

[10] V. Madhok and D. Landgrebe, “A process model for
remote sensing data analysis,” IEEE T., vol. 40, no. 3,
pp. 680–686, 2002.

[11] Berthold K Horn and Brian G Schunck, “Determining
optical flow,” in Technical Symposium East. Society for
Optics and Photonics, 1981, pp. 319–331.


