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ABSTRACT

The dynamic Allan variance (DAVAR) is a tool for the char-
acterization of precise clocks. Monitoring anomalies of pre-
cise clocks is essential, especially when they are employed
onboard the satellites of a global navigation satellite system
(GNSS). When an anomaly occurs, the DAVAR changes with
time, its shape depending on the type of anomaly occurred.
We obtain the analytic DAVAR for a change of variance in
the clock noise, an anomaly with critical effects on the clock
performances. This result is helpful when the clock health is
monitored by observing the DAVAR.

Index Terms— Dynamic Allan variance, GNSS clocks,
clock noise, clock anomaly, change of variance

1. INTRODUCTION

Precise clocks are the core of global navigation satellite sys-
tems (GNSSs). The user position is in fact estimated from the
time of flight of the signals traveling from the satellites to the
receiver. Therefore, an error in time implies an error in posi-
tion, and precise clocks are used onboard satellites to reduce
the positioning error. Common space clocks are cesium, ru-
bidium, and hydrogen maser clocks. Atomic clocks are also
used in ground stations to generate the system time, to which
all space clocks are periodically synchronized.

Space clocks can experience anomalies due to several
factors, such as radiations, temperature, aging, and sudden
breakdowns. Understanding atomic clock anomalies is essen-
tial because of their negative effect on the positioning error,
and for this reason they have attracted several investigators in
the recent years. In [1], phase jumps, frequency jumps and
shot-noise-type anomalies are detected and removed; in [2]
clock frequency jumps are detected by using an approach
based on energy; in [3]- [5] the Kalman filter is used to detect
clock anomalies; in [6] the performances and anomalies of the
clocks on-board the experimental Galileo satellites GIOVE-A
and GIOVE-B are discussed; in [7] onboard measurements to
detect and mitigate clock anomalies are studied.

We instead focus on variations in the statistics of the clock
noise. Specifically, we consider changes of variance in the
clock noise. Although this anomaly has received little at-
tention, it is interesting for two main reasons. First, it can

make the clock violate the specifications, which bound the
maximum clock noise variance, with a negative effect on the
clock predictability and, consequently, on the positioning er-
ror. Second, it might have a correlation with major clock fail-
ures. In Fig. 1 we show the behavior of a clock onboard the
GPS satellite SVN30 for a few months of 2011. We see that
the clock noise variance increases suddenly at approximately
t = 120 days. Then, the clock is turned off, and after a block
of missing data it is replaced by a new one, as confirmed by
the corresponding GPS notice advisory to Navstar users.

We characterize how a change of variance in the clock
noise impacts the clock stability, the fundamental quantity
characterizing the performances of a precise clock. The IEEE
[8] and ITU [9] standard definition of clock stability is the
Allan variance [10], [11]. The Allan variance is a function
of the interval τ on which the clock is observed. The smaller
the Allan variance, the higher the clock stability and its per-
formances in terms of predictability and, ultimately, of user
positioning error.

Unfortunately, as our calculations show, the Allan vari-
ance averages out changes of variance in the clock noise,
and therefore it cannot be used to characterize this type of
anomaly. This goal can be achieved with the dynamic Allan
variance (DAVAR) [12], [13], an extension of the Allan vari-
ance for the characterization of clocks affected by anomalies.
The DAVAR is a surface function of time and the observation
interval τ . When the clock behaves according to the specifica-
tions, the DAVAR is stationary with time. When an anomaly
occurs, the shape of the DAVAR changes depending on the
type of anomaly.

We obtain the analytic DAVAR for a sudden change in
the clock noise variance. The result shows that the DAVAR
clearly tracks the change of variance. In addition to character-
izing how clock stability is affected by a change of variance,
knowing the DAVAR for this type of anomaly is interesting
for two reasons. First, it clarifies the shape of the DAVAR for
a change of variance without the fluctuations naturally arising
in the estimate obtained from measured data. This knowl-
edge helps the operators which monitor the quality of space
clocks in detecting and identifying clock anomalies. Second,
it is useful for the design of anomaly detectors based on vari-
ations of the shape of the DAVAR surface [14]. We point out
that the characterization of the change of variance presented



in this article is completely analytic, whereas in our previous
works we have carried out numerical studies only. We also
note that the presented result is part of a research line on the
characterization of precise clock anomalies in the DAVAR do-
main. In [15], [16] we investigate in fact a series of common
anomalies occuring in precise clocks, such as deterministic
oscillations, phase jumps, and frequency jumps.

The article is organized as follows. In Sect. 2 we obtain
the Allan variance and the DAVAR for a clock first with con-
stant variance and then with a change of variance. In Sect. 3
we analyze the obtained DAVAR for the case of a change of
variance.

Fig. 1. A few months of data from the clock onboard GPS
satellite SVN30. After an increase in variance approximately
at t = 120 days, the clock is turned off and replaced by a new
one.

2. THE DYNAMIC ALLAN VARIANCE OF A
CHANGE OF VARIANCE

We define the time deviation x(t) as the deviation of the clock
reading h(t) from a time reference h0(t),

x(t) = h(t)− h0(t). (1)

The corresponding (normalized) frequency deviation is

y(t) =
dx(t)

dt
. (2)

The time and frequency deviations are fundamental quantities
for the description of precise clocks [17]. Since they have the
structure of noise, they are referred to as clock noise. We
now consider two cases. First, the stationary case of a white
frequency noise. Second, the nonstationary case of a white
frequency noise whose variance increases suddenly at t = 0.

2.1. Constant variance

The noise components in the clock noise change depending
on the clock type. A simple and effective model of the clock

noise is a white frequency noise on the frequency deviation,
defined as

y(t) = ξ(t), (3)

where ξ(t) is a white Gaussian noise with zero mean and au-
tocorrelation function

Rξ(t1, t2) = δ(t1 − t2). (4)

Typically, the available measurements are the sampled values
x[n] = x(nTs) of the time deviation, where Ts is the sam-
pling time. The corresponding discrete-time frequency devi-
ation y[n] is obtained as

y[n] =
x[n]− x[n− 1]

Ts
. (5)

By inverting (2), we can rewrite y[n] as

y[n] =
1
Ts

∫ nTs

(n−1)Ts

y(t′)dt′. (6)

This result shows that the discrete-time frequency deviation
y[n] is obtained by averaging the corresponding continuous-
time version y(t).

The standard quantity for the characterization of clock
noise is the Allan variance [8]-[11],

σ2
y(τ) =

1
2

〈
∆2(t, τ)

〉
, (7)

where
∆(t, τ) = ȳ(t + τ)− ȳ(t), (8)

the average frequency deviation on an observation interval τ
is

ȳ(t) =
1
τ

∫ t

t−τ

y(t′)dt′, (9)

and 〈〉 is the averaging operator defined as

σ2
y(τ) =

1
2

lim
T ′→∞

1
T ′

∫ T ′/2

−T ′/2

∆2(t, τ)dt. (10)

When ∆(t, τ) is a stationary random process, we can write
the Allan variance in the equivalent form

σ2
y(τ) =

1
2
E[∆2(t, τ)], (11)

where E is the expected value. This form is particularly con-
venient for calculations. We have

E[∆2(t, τ)]=E
[
ȳ2(t)

]
+ E[ȳ2(t + τ)]− 2E [ȳ(t)ȳ(t + τ)] .

(12)
For the white frequency noise (3), it is

E[∆2(t, τ)] = 2τ−1, (13)



σ2
y(t, τ) t region τ region
a2
1τ
−1 t < −T/2 0 < τ < T/2

a2
1τ
−1 + 1

4 (a2
2 − a2

1)
(t+T/2)2

T−2τ τ−2 −T/2 ≤ t < − |T/2− 2τ | 0 < τ < T/2
1
2 (a2

1 + a2
2)τ

−1 + (a2
2 − a2

1)τ
−1 t

T−2τ − |T/2− 2τ | ≤ t < |T/2− 2τ | 0 < τ ≤ T/4
1
2 (a2

1 + a2
2)τ

−1 + 1
2 (a2

2 − a2
1)τ

−2t − |T/2− 2τ | ≤ t < |T/2− 2τ | T/4 < τ < T/2
a2
2τ
−1 − 1

4 (a2
2 − a2

1)τ
−2 (t−T/2)2

T−2τ |T/2− 2τ | ≤ t < T/2 0 < τ < T/2
a2
2τ
−1 t > T/2 0 < τ < T/2

Table 1. DAVAR of a change of variance in the clock noise.

because

E
[
ȳ2(t)

]
= E[ȳ2(t + τ)] = τ−1, (14)

E [ȳ(t)ȳ(t + τ)] = 0. (15)

Substituting, we obtain the classic result [10]

σ2
y(τ) = τ−1. (16)

The DAVAR is defined as

σ2
y(t, τ) =

1
2(T − 2τ)

∫ t+T/2−τ

t−T/2+τ

E[∆2(t′, τ)]dt′, (17)

where T is the length of the analysis window. Replacing (13),
we have

σ2
y(t, τ) = τ−1. (18)

Therefore, the DAVAR of a white frequency noise with con-
stant variance is stationary with time and equals at any time
the Allan variance. Since the white frequency noise (3) is
stationary with time, this result satisfies our intuition.

2.2. Change of variance

We consider the time-varying white frequency noise defined
as

y(t) = a(t)ξ(t), (19)

where

a(t) =
{

a1, t < 0,
a2, t ≥ 0.

(20)

The corresponding discrete-time average frequency deviation
is given by

y[n] =
a[n]
Ts

∫ nTs

(n−1)Ts

ξ(t′)dt′, (21)

where

a[n] =
{

a1, n < 0,
a2, n ≥ 0.

(22)

The mean of y[n] is zero, and its standard deviation is given
by

σy[n] =

{
a1√
Ts

, n < 0,
a2√
Ts

, n ≥ 0.
(23)

Therefore, a step change in a(t) at t = 0 implies a step change
in the standard deviation of the measured frequency at n = 0.

To compute the term E[∆2(t, τ)], we see that

E
[
ȳ2(t)

]
=





a2
1τ
−1, t < 0,

a2
1τ
−1 + (a2

2 − a2
1)tτ

−2, 0 ≤ t < τ,
a2
2τ
−1, t ≥ τ.

(24)

E[ȳ2(t + τ)] =





a2
1τ
−1, t < −τ,

a2
2τ
−1 + (a2

2 − a2
1)tτ

−2, −τ ≤ t < 0,
a2
2τ
−1, t ≥ 0,

(25)

and,
E [ȳ(t)ȳ(t + τ)] = 0. (26)

Substituting in (12),

E[∆2(t, τ)] =





2a2
1τ
−1, t ≤ −τ,

(a2
1 + a2

2)τ
−1 + (a2

2 − a2
1)tτ

−2, |t| < τ,
2a2

2τ
−1, t ≥ τ.

(27)
To compute the Allan variance, we combine (10) and (11),
obtaining

σ2
y(τ) =

1
2

lim
T ′→∞

1
T ′

∫ T ′/2

−T ′/2

E[∆2(t, τ)]dt. (28)

After a few calculations, we have

σ2
y(τ) =

a2
1 + a2

2

2
τ−1 (29)

Therefore, the Allan variance does not track the nonstationar-
ity in the clock noise variance, since it provides an average of
the variance values before and after the step change. Clearly,
we cannot use the Allan variance as a tool for characterizing
this type of clock anomaly.

By replacing (27) in (17), we obtain the DAVAR shown in
Tab. 1. The obtained DAVAR is a function of time, and it ac-
tually tracks the change of variance. We discuss its properties
in the next section.

3. ANALYSIS OF A CHANGE OF VARIANCE IN THE
CLOCK NOISE

As Tab. 1 shows, the obtained DAVAR is a function of the
t, τ region considered. When t < −T/2 and t > T/2 the



Fig. 2. DADEV of a change of variance. The plot shows the
DADEV of a change of variance in the clock noise, obtained
when the window length is T = 100. Before and after the
sudden change of variance, the DADEV surface is stationary
with time.

DAVAR is stationary with time and equals the Allan vari-
ance of a white frequency noise with a constant variance of
a2
1τ
−1 and a2

2τ
−1, respectively. This result is expected be-

cause the DAVAR is computed on a sliding window of length
T , and hence it catches the change in variance only when
−T/2 ≤ t ≤ T/2. In this region, for a given τ , the behavior
of the DAVAR is linear or quadratic with time, depending on
the time region considered. To better understand this result,
we consider a change of variance with parameters a1 = 1
and a2 = 2. In Fig. 2 we show the dynamic Allan deviation
(DADEV) obtained for the window length T = 100. As com-
monly done in precise timing, both the observation interval
τ and the DADEV are in logarithmic coordinates. Since the
DADEV for t < −T/2 and t > T/2 is proportional to τ−1/2,
its representation under this logarithmic scaling is a straight
line constant with time. We see that the DADEV correctly
tracks the increase in variance occurring at t = 0. The change
between the two values of variance happens in the transition
region −T/2 ≤ t ≤ T/2.

The window length influences the duration of the transi-
tion region. Figure 3 shows the DADEV when T = 200.
We see that the change between the two stationary variance
values is much slower than for T = 100, corresponding to a
poorer localization in time of this clock anomaly. Conversely,
in Fig. 4 we show the DADEV for T = 50. In this case, the
transition region is short and the change of variance is well
localized in time. Figures 2-4 clearly highlight the tradeoff
on the window length to which the DADEV estimated from
measured data is subject. A short window guarantees in fact a
good time localization of the change of variance, but will have
large fluctuations in the estimates due to the limited number
of samples in the window. Conversely, a long window will
guarantee lower fluctuations of the estimate, but a poor time

Fig. 3. DADEV of a change of variance for the case of a long
window. The plot shows the DADEV of a change of variance
in the clock noise obtained for a window length of T = 200.

Fig. 4. DADEV of a change of variance for the case of a short
window. The plot shows the DADEV of a change of variance
in the clock noise obtained for a window length of T = 50.

localization of the change of variance.
In Fig. 5 we show the DADEV estimated from the GPS

data in Fig. 1. The DADEV clearly represents the change
of variance in the experimental data. We in fact see the in-
crease in variance at the beginning of the signal, and then,
after a block of missing data, the decrease in variance. This
low variance value corresponds to the new clock that replaces
the malfunctioning one. The fluctuations of the DADEV sur-
face are due to the estimation process.

4. CONCLUSIONS

We have characterized a change of variance in the noise of a
precise clock in the DAVAR domain. This anomaly is critical
because it can make the clock violate the specifications, and it
is potentially associated to major clock failures. We have ob-
tained its exact analytic DAVAR. The result is exact because



Fig. 5. DADEV of the GPS data shown in Fig. 1. The
plot shows the DADEV estimated from the experimental data
shown in Fig. 1. The DADEV clearly highlights the changes
of variance occurring in the signal. The fluctuations are due
to the estimation process.

no approximation has been used. As expected, the DAVAR is
stationary with time before and after the anomaly. When the
anomaly occurs, the DAVAR shows a transition region which
is linear or quadratic with time. This result can be helpful in
understanding the health status of a precise clock, an essen-
tial problem in GNSSs, and can lead to the design of better
automatic anomaly detectors.
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