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ABSTRACT

We propose a new optimization framework to compensate

chromatic dispersion by complex-valued infinite impulse re-

sponse (IIR) all-pass filter. The design of the IIR all-pass fil-

ter is based on minimizing the mean square error (MSE) in

group-delay and phase cost functions. The necessary condi-

tions are derived and incorporated into a multi-step optimiza-

tion framework to ensure the stability of the resulting IIR fil-

ter. It is shown that IIR filter achieves similar or slightly bet-

ter performance compared to its finite impulse response (FIR)

counterpart. Moreover, IIR filtering requires significantly less

number of taps to compensate the same CD channel compared

to FIR filtering.
1. INTRODUCTION

Various digital signal processing (DSP) algorithms for optical

communication have been investigated to improve the trans-

mission performance by mitigating fiber optic impairments

like polarization mode dispersion (PMD) and chromatic dis-

persion (CD). PMD has a time varying transfer function

whereas the CD is static in nature and changes the phase of

input signal, i.e., it has an all-pass behavior. As presented

in [1], for a symbol rate of T , a T
2
tap delay finite impulse

response (FIR) filter may be used to remove the effects of

CD. The number of FIR filter taps required grows linearly

with increasing dispersion and fiber length. The efficient

way to implement linear convolution is using frequency do-

main equalization (FDE) technique by fast Fourier transform

(FFT). FDE is very attractive because it has much lower com-

plexity in comparison to the time domain equalization (TDE)

when filter order is very large [2]. But when number of filter

taps are small (short transmission distance in this case) then

it is advantageous to use TDE. In [3], G. Goldfarb and G.

Li suggested dispersion compensation (DC) using TDE tech-

nique based on infinite impulse response (IIR) all-pass filter.

They showed that IIR filtering achieves similar performance

with a substantially reduced number of operations (multipli-

cations). Their methodology requires Hilbert transformer and

time reversal operation to design real-coefficients IIR filter

separately for real and imaginary part of the signal.

Several methods [4],[5],[6],[7] are available in the litera-

ture for the design of digital all-pass filter to match a desired

phase response. In [8], J.S. Abel and J.O. Smith presented the

method of all-pass filter design scheme based on the desired

group-delay function which overcomes the following two ma-

jor shortcomings of the existing methods

1. numerical difficulties and precision for high order all-pass

filter design.

2. a priori selection of filter order rather than determined by

the algorithm.

Although their design methodology is quite simple and fast

but it doesn’t take into account the desired phase behavior.

In this paper, we will incorporate the desired group delay as

well as desired phase behavior in a multi-step multi-objective

optimization framework and show that there is a significant

improvement compared to [8] in terms of bit error rate (BER)

for low order all-pass filter design.

The main contribution of this paper is the presentation of

an optimization framework to design a stable complex-valued

IIR all-pass filter for CD equalization. Our design methodol-

ogy doesn’t require the use of Hilbert transformer and time re-

versal operation, therefore, operating complexity is less com-

pared to [3]. Moreover, our technique has better performance

in low and moderate order all-pass filter design methods com-

pared to [8]. Our method is quite general and can be applied

to any channel for phase equalization although it is explained

for CD equalization. This paper is organized as follows. Sec-

tion 2 introduces the channel transfer function for CD. Sec-

tion 3 describes the equalizer design based on IIR filtering

and derives necessary conditions to determine the filter or-

der and stability. Section 4 formulates the task of finding the

coefficients of the filter in terms of a constraint optimization

problem based on two design criterion. Section 5 explains our

framework to solve the constraint optimization problem. Sim-

ulation results comparing FIR and IIR filtering are presented

in Section 6. Conclusions are given in Section 7.

2. CHANNEL MODEL

The low-pass equivalent model of CD channel of a single

mode fiber of length L can be written as

HCD(Ω) = exp
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where Ω, λ0, D and c are baseband radial frequency, operat-

ing wavelength, fiber dispersion parameter and speed of light,
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Fig. 1. Efficient implementation of 1st order all-pass section.

respectively. If we sample the signal by sampling frequency

B Hz, then the equivalent model in discrete domain can be

represented as

HCD(ω) = exp(− j · α · ω2) , (2)

where α = λ2
0
·B2 ·D ·L/ (4πc) and ω ∈ [-π, π). It is clear from

(2) that the CD channel has an all-pass characteristic, i.e., it

only changes the phase of the input signal.

3. EQUALIZER DESIGN

The transfer function of an ideal equalizer to compensate CD

channel is obtained by taking the inverse of (2)

GIdeal(ω) = exp(+ j · α · ω2) . (3)

Since the CD channel exhibits an all-pass behavior, therefore,

the natural choice to equalize it by the cascade of NIIR first

order IIR all-pass sections of the form

GIIR (z) =

NIIR
∏

i=1

−a∗
i
+ z−1

1 − ai · z−1

=

NIIR
∏

i=1

−ρie
− jθi + z−1

1 − ρie jθi · z−1
, (4)

where ρi and θi are the radius and angle of the i
th pole location

in the complex z-plane. Each first order section of complex

valued IIR all-pass filter can be efficiently realized by four

real multiplications as shown in Fig. 1. Before presenting our

framework to find the coefficients of IIR all-pass filter, two

important questions relating to stability and filter order selec-

tion need to be addressed. The answers to both the questions

are given based on the group delay characteristic.

The group delay of an ideal equalizer is the negative gra-

dient of the phase response with respect to ω in (3),

τIdeal (ω) = −
∂

∂ω
arg {GIdeal (ω)} = −2 · α · ω . (5)
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Fig. 2. Desired group delay.

The phase response of an IIR all-pass filter is

φIIR (ω) =

NIIR
∑

i=1

[

−ω − 2 · arctan

(

ρi · sin (ω − θi)

1 − ρi · cos (ω − θi)

)]

. (6)

The total group delay of (4) is given by the expression

τIIR (ω) =

NIIR
∑

i=1

1 − ρ2
i

1 + ρ2
i
− 2 · ρi · cos (ω − θi)

. (7)

For a stable IIR filter, all poles must lie inside the unit circle.

But it was shown in [8] that approximating the negative group

delay using (7) implies that ρi > 1. Therefore, a constant

integer factor β is added in τIdeal (ω) to make the desired group

delay a positive function as shown in Fig. 2. Desired group

delay and phase response take the form

τDesired (ω) = −2 · α · ω + β , (8)

φDesired (ω) = α · ω2 − β · ω − φ0 , (9)

where β = ⌈−τIdeal (ω = π)⌉ = ⌈2 · α · π⌉. In section 5, a

method will be given to calculate the phase correction term

φ0 which is also an integration constant.

The order of an all-pass filter is selected using the argu-

ment of an area under the desired group delay curve. It states

that the area under the group delay function of an all-pass fil-

ter should match that of the desired group delay, i.e.,

∫ π

−π

τIIR (ω) · dω =

∫ π

−π

τDesired (ω) · dω. (10)

Since the group delay is the negative derivative of the phase

response with respect to frequency, its integral around the unit

circle is simply the negative phase accumulated during one

traversal of the unit circle (c.f. (6)),

∫ π

−π

τIIRi
(ω) · dω = φIIRi

(−π) − φIIRi
(π)

= 2π. (11)



Therefore, total area contributed by NIIR sections is
∫ π

−π

τIIR (ω) · dω = 2π · NIIR . (12)

Area under the desired group delay curve is given by
∫ π

−π

τDesired (ω) · dω = 2π · β. (13)

Comparing (12) and (13), the total number of all-pass stages
are given by

NIIR =
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In [9], number of taps to equalize the same CD channel with

FIR filter is derived as

NFIR ≈ 2
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which has almost twice the complexity compared to an IIR

all-pass equalizer, i.e., NFIR ≈ 2 · NIIR.

4. DESIGN CRITERIA

The objective is to design an IIR all-pass equalizer whose

phase response matches the desired phase response of (9).

Therefore, product of an all-pass equalizer and the CD chan-

nel has to be ideally

GIIR (ω) · HCD (ω) = e− j(φ0+β·ω) . (16)

The mean square error (MSE) of the transfer function con-

taining the phase information is defined as

MSEtrans. phase =

∫ π

−π

| GIIR (ω) · HCD (ω) − e− j(φ0+β·ω) |2 dω .

(17)
The coefficients of an IIR all-pass equalizer are found by solv-

ing the following cost function

Ψtrans. phase = min
ρi,θi,φ0

MSEtrans. phase s.t. ρi < 1, i = 1, 2, . . . ,NIIR .

(18)
The optimization problem in (18) is non-convex and non-

linear so we can only solve it by non-linear optimization tech-

niques. But usually such solvers require good initial guess of

the solution and it may stuck into the local minima if the ini-

tial solution is far from the global minima. To overcome this

problem, we first minimize the mean square error in the group

delay MSEGD metric by using the group delay cost function

ΨGD, i.e.,

ΨGD = min
ρi,θi

MSEGD s.t. ρi < 1, i = 1, 2, . . . ,NIIR (19)

where

MSEGD =

∫ π

−π

| τDesired (ω) −

NIIR
∑

i=1

τIIRi
(ω) |2 dω . (20)

Although (19) is also non-linear but the initial solution can

easily found by the Abel-Smith algorithm that can be further

optimized to reach the sub-optimal solution. This sub-optimal

result then provides a good starting solution to solve optimiza-

tion problem (18).

Abel-Smith Algorithm

Non-linear Optimization
ρi,init, θi,init

Non-linear Optimization
φ0,init

Non-linear Optimization
ρi, θi,φ0

Fig. 3. Block diagram of optimization framework.
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Fig. 4. Segmentation of τDesired (ω) into 2π area bands.

5. OPTIMIZATION FRAMEWORK

The flow chart of our framework for solving (18) is shown in

Fig. 3. The initial estimate of the radii and angles are found

by the Abel-Smith algorithm which is then refined by a non-

linear solver to find the solution of (19). The solution of (19)

is used as an initial starting guess to find the final optimal

solution of (18). Any gradient based non-linear solver can be

used to solve optimization problem (18) and (19) respectively.

In the following, we will provide details of all the steps in our

optimization framework.

5.1. Abel-Smith Algorithm

In [8], J.S. Abel and J.O. Smith described a method to extract

filter coefficients for an all-pass design with an arbitrary group

delay. The design procedure is as follow:

1. Divide τDesired (ω) into 2π-area frequency bands, as illus-

trated in Fig. 4.

2. Fit a first-order (complex) all-pass sectionGIIRi
(ω) to each

band as described below.



3. Cascade the first-order sections to form the all-pass filter,

GIIR(ω) =

NIIR
∏

i=1

GIIRi
(ω) .

The pole frequency is taken to be the band midpoint,

θi =
ωi−1 + ωi

2
. (21)

The expression for pole radius is derived as,

ρi = µi −

√

µ2
i
− 1 , (22)

where

µi =
1 − ζ · cos(∆i)

1 − ζ
, ∆i =

ωi − ωi−1

2
,

and ζ is taken from the interval
[

0.75 0.85
]

.

5.2. Non-linear Optimization, ΨGD

The solution provided by the Abel-Smith algorithm is im-

proved by finding a solution to (19) using a non-linear solver.

5.3. Non-linear Optimization, Ψφ0

Till this point, we have only estimates of the radii and an-

gles. In order to get the initial phase correction term φ0, the

following uncostrained optimization problem is solved

Ψφ0 = min
φ0

MSEtrans. phase . (23)

5.4. Non-linear Optimization, Ψtrans. phase

The final step of our framework solves (18) using a non-linear

optimization solver with initial estimate of radii, angles and

phase rotation provided by the first three steps of the opti-

mization framework.

In the next section, we will do the performance compari-

son in terms of BER for chromatic dispersion compensation

between an IIR and FIR equalizer.

6. SIMULATION RESULTS

A 28 GBaud QPSK transmission with digital coherent re-

ceiver applying two-fold oversampling with B = 56 GS/s is

simulated in MATLAB to verify our technique for the CD

equalization. System parameters are λ0 = 1550 nm, D = 16

ps/nm/km and L = 23 km. Moreover, Mach-Zehnder modu-

lator (MZM) is used as a pulse shaper at the transmitter side.

Also optical and electrical filter with cut-off frequencies 17.5

GHz and 19.1 GHz respectively are used at the receiver side.

Apart from the CD channel impairments, all transmitter and

receiver imperfections such as phase noise, synchronization

are not considered.

Substituting system parameter values in (14), the number

of taps of an IIR all-pass and FIR equalizer turn out to be

NIIR = 5 and NFIR = 9 respectively. The coefficients of an IIR
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Fig. 5. Performance comparison between the proposed IIR

equalizer and FIR equalizer for a fiber length 23 km.

all-pass equalizer are computed based on our optimization

framework. We obtain φ0 = −2.4189 and the following set of

coefficients:
1 2 3 4 5

ρi 0.8162 0.7402 0.6759 0.6060 0.51101

θi -2.7448 -2.0700 -1.2960 -0.3768 0.8132

The coefficients of the FIR equalizer are calculated by tak-

ing the inverse discrete-time Fourier transform of (3) and

selecting the NFIR dominant taps.

For the performance analysis, the optical signal to noise

ratio (OSNR) at a bit error ratio (BER) of 10−3 is chosen as a

figure-of-merit. Fig. 5 compares the BER performance of an

IIR all-pass with the FIR equalizer as a function of OSNR. It

can be seen that the FIR equalizer achieves the required per-

formance with four more additional taps compared to an IIR

equalizer. Moreover it was mentioned in [9] that the nominal

number of FIR taps can be reduced to 60% of the theoretical

value given by (15) with some performance penalty. In this

case, the performance loss is around 2 dB when NFIR = 6 taps

are selected. To investigate this loss for the high filter order,

BER curve for the fiber of length L = 502 km is simulated and

60% of the nominal value turns out to be 120. Fig. 6 shows

that the performance loss is around 1 dB which is still signifi-

cant compared with an IIR equalizer. Furthermore, FIR equal-

izer with 150 taps achieves the required performance which is

approximately 75% of (15).

We will also compare the performance of our method and

the Abel-Smith method [8] for both low and high all-pass fil-

ter order. Fig. 7 shows that our optimization framework has

significant better performance at a low filter order compared

to the Abel-Smith algorithm. The reasoning behind the better

performance at low filter order comes from the fact that we

are minimizing the MSE of the desired phase transfer func-

tion in addition to MSE in group delay metric in the optimiza-

tion framework. On the other hand, the approximation of the
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Fig. 7. Performance comparison between the proposed IIR

and Abel-Smith IIR equalizer design for a fiber length of 23

km and 502 km.

Abel-Smith algorithm in finding the coefficients of the filter

based on desired group delay behavior get better for high filter

order, so there is no improvement in incorporating the phase

information. In other words, both the algorithms have the

same performance at high filter order. Although our frame-

work is much more computational extensive than the Abel-

Smith algorithm but it is not a big issue since CD channel is

static in nature for a fixed fiber length. Therefore, the oper-

ating complexity is the same for both the schemes since the

coefficients of the IIR equalizer are calculated offline.

7. CONCLUSION

In this paper, we presented a framework to equalize the CD

channel with complex-valued IIR all-pass filter. We derived

necessary conditions based on the group delay characteristic

to select the minimum filter order and guarantee the stabil-

ity of resulting all-pass. We proposed to optimize the filter

coefficients using a two step approach.

For the performance evaluation, the BER metric is used

and it can be seen from the simulation results that our so-

lution has better performance in comparison with other FIR

based equalization. The benefit obtained by our approach is

twofold. First, it reduces the tap count in the range of 65%

to 70% compared to FIR filtering for the same performance.

Second, it eliminates the use of Hilbert transformer [3] whose

computational complexity is not negligible at shorter dis-

tances. Moreover, the performance of our method is better

compared with the Abel-Smith algorithm at a low filter order.

We highlight the fact that the IIR equalizer is a TDE and

practically it is not advantageous to use the proposed frame-

work for longer distances since the computational complexity

grows linearly with the filter order. One possible way to re-

duce the complexity for long distances is to divide the long

CD channel into narrow sub-channels using a filter bank [10]

and design low order IIR equalizer for each of them. It is

important to mention that we explained our framework in the

context of approximating a phase response of a CD equalizer

with an IIR filter but the same framework can be applied to

approximate any arbitrary phase response.
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