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ABSTRACT

This paper deals with noise removal in ElectroMyoGram (EMG) sig-
nals acquired in the hostile noisy environment of functional Mag-
netic Resonance Imaging (fMRI). The noise due to magnetic fields
and radio frequencies corrupts significantly the EMG signal which
render its extraction very difficult. The proposed approach operes
in the frequency domain to estimate the noise spectrum to subtract
it from noisy observation spectrum. The noise estimation is based
on spectral minima tracking in each frequency bin without any dis-
tinction between muscle activity and muscle rest. But it looks for
connected time-frequency regions of muscle activity presence to es-
timate a bias compensation factor. The method is tested with a simu-
lated noisy observation in order to evaluate its performance using ob-
jective criteria. It is also validated for real noisy observations where
no clean is available.

Index Terms— fMRI noise, EMG signal, denoising, spectral
subtraction, noise spectrum estimation

1. INTRODUCTION

The ElectroMyoGram (EMG) signal is the electrical manifestation
of a muscular activity. It is a complex signal influenced by the
anatomical and the physiological properties of the muscle and also
by the peripheral nervous system. To better understand the adap-
tation mechanisms of the motor command coming from the brain
and the muscle synergies, it is interesting to acquire the EMG sig-
nal in functional Magnetic Resonance Imaging (fMRI) environment.
Indeed, it provides a mean of studying neuronal circuits that con-
trol muscles. For example, the brain Blood Oxygenation Level-
Dependent (BOLD) changes determined by fMRI are used to iden-
tify areas of neuronal activation associated with muscle contraction
and their dynamical behavior during muscle activity.

However, the electromagnetic environment of the fMRI is par-
ticularly hostile and makes EMG acquisition difficult. The difficulty
come from the big level of noise which can be classified into three
categories according to its physical origin: i) the very high static
magnetic field having an order of Tesla (decade of thousands times
the Earth’s magnetic field), ii) the radio frequency waves imposed
by the image generating system which requires the emission of suc-
cessive frequency pulses to excite hydrogen nuclei, and iii) the fast
variations of magnetic field, called gradients, introduced for spatial
encoding of the image or for cutting plane selection.

While denoising of EMG signal acquired in normal environment
has attracted the attention of researchers since decades ([1, 2, 3],..),

it is not the case for fMRI environment. This is probably due to the
novelty of the application and the difficulty of denoising due to the
large amount of noise and to its specificities. However, some pioneer
works should be mentioned: approaches based on Comb filtering [4]
and those based on wavelet thresholding [5].

In this paper, the proposed approach is quite different. It is de-
veloped in the frequency domain and it aims at estimating noise
spectrum during time intervals where only noise is present. Indeed,
a relatively long time interval separates contractions which is quite
enough to estimate noise correctly. This amount of noise is recur-
sively updated over time when only noise exists. It is subtracted
from noisy EMG during both intervals of muscle rest and muscle
activity.

It is important to mention that this idea is well developed in
speech enhancement (see for example the pioneer work of Boll [6]).
But the noise and the desired signal characteristics are quite oppo-
site. In speech enhancement, the noise has not a particular struc-
ture (it is generally assumed to be additive white or low correlated
Gaussian noise) and the speech has an harmonic structure for voiced
segments and looks like noise for unvoiced segments. In the case of
EMG acquired in fMRI environment, the muscle signal is a quasi-
white noise whereas fMRI noise is well structured with an harmonic
structure imposed by the periodicity of image acquisition.

The paper is organized as follows. Section 2 is devoted to noise
characteristics analysis in time and frequency domains. Section 3 de-
tails the approach proposed for fMRI noise reduction and illustrates
the different steps. Section 4 validates the approach by simulating an
fMRI noisy EMG and evaluating the approach using objective crite-
ria. Section 5 gives some results for real noisy EMG signals. Finally,
conclusions are drawn in Section 6.

2. CHARACTERIZATION OF NOISE AND EMG SIGNALS
IN FMRI ENVIRONMENT

2.1. Time domain analysis

Fig. 1 gives an illustration of an EMG signal acquired on the fMRI
tunel. The subject is doing a hand grip exercise composed of 10
contractions of 4.4 seconds duration interspersed by rest intervals of
44 seconds. The first 5 ones are acquired before the functioning of
the image acquisition system whereas the five others are acquired
during fMRI work. One can notice the low level of noise in the first
set. This latter is due to the EMG signal acquisition system (driver
amplifier, electrodes, cable movement artifact, inference with power
lines...) and to cross talk (other adjacent EMG signals in activity



Fig. 1. Temporal evolution of EMG signal before and during image
acquisition in fMRI tunel.

a)

b)

Fig. 2. A zoom on fMRI noise to show its harmonicity (a) and its
variation over time (b).

acquired via skin conduction). During the second set of contractions,
the fMRI noise due to the magnetic and RF sources hide completely
the signal. Hence, it is impossible to locate the contractions by a
simple visual inspection of the signal in the time domain as it is the
case in normal acquisition conditions.

In Fig.2.a, a zoom on a noise portion of 200 ms duration is
drawn. It permits to show the harmonic structure of noise. In fact,
the RF pulses are applied repetitively to acquire image slices cov-
ering the whole brain volume scan. In Fig.2.b, a larger zoom of
duration 20 s shows that noise amplitudes change over time. Some-
times, short abrupt changes occur due to the gradient of magnetic
field. This variation is qualified as noise non stationarity.

2.2. Frequency domain analysis

Fig. 3 shows three amplitude spectrum: i) fMRI noise (acquired
during muscle rest), ii) clean EMG signal (acquired in normal con-
dition), and iii) noisy EMG (acquired in fMRI environment). The
clean EMG signal (in the lower part of the figure) has a quasi-
constant spectrum, it hence looks like a white noise. The fMRI
noise appears as frequency bins situated at frequencies multiples
of the slice acquisition frequency. The fundamental frequency is
defined as the number of image slices N over the repetition time
of image acquisition TR. In this case, TR = 2215ms, N = 43
so that the fundamental frequency is F0 = 19.41Hz. The noisy
EMG amplitude spectrum is dominated by that of noise. In fact, the
level of noise is so high so that the quasi-constant spectrum of EMG
appears as spectrum shifting.

Fig. 3. Amplitude spectrum of fMRI noise, EMG signal in normal
and fMRI conditions of acquisition. Spectrum are slightly shifted
for the sake of clarity.

3. DENOISING TECHNIQUE

The noise estimation method developed in this work is inspired from
the powerful method of Martin carried for speech enhancement [7]
and extended in other works such as that of Sorensen et al [8]. The
details are given in the following subsections.

3.1. Notations

Let y(k) = s(k) + n(k) denote the noisy EMG signal, where s(k)
is the clean one and n(k) is the fMRI noise which is assumed to be
statistically independent of s(k). Noisy EMG signal is transformed
in the time-frequency domain by first applying a window w(k) to
N samples of y(k) and then computing the FFT of the windowed
signal. The periodogram of the noisy EMG, approximated as to the
sum of periodograms of clean EMG and noise, is given by:

|Y(m, l)|2 = |S(m, l)|2 + |N(m, l)|2, (1)

where l is the frequency bin and m is the frame index.
Note that in practice, the EMG signal is Hamming windowed using
a 512-ms window and frames are overlapped during 256-ms. The
sampling frequency is fs = 1000Hz. The FFT has the same size as
the temporal frame.

3.2. Noise estimation

Once computed, the noisy periodogram is twice smoothed: a spectral
smoothing to reduce the fluctuations of the noisy EMG periodogram
and a temporal process to correct important fluctuations over time.
The spectral smoothing is obtained using a weighted sum of 2D+1
frequency bins around the considered bin:

P(m, l) =
D∑

ν=−D

b(ν)|Y(m, (k − ν)K |
2, (2)

where (m) denotes m modulus K, {b(ν)}Dν=−D are spectral
weights such as the sum of all of them is equal to one.

The temporal smoothing is performed using first order recursion:

P(m, l) = β(m, l)P(m− 1, l) + (1− β(m, l))P(m, l), (3)

where β(m, l) is the smoothing factor which varies over time and
along frequency bins. It is optimized for tracking non stationary



Fig. 4. Spectrums at different steps of the algorithm.

signals by minimizing a conditional mean square error criterion. It
is further lower-limited to ensure a minimum degree of smoothing.
The details of β(m, l) calculus are given in [7].

During muscle rest, the EMG signal energy is close or identi-
cal to zero. Thus, the noisy observation periodogram is minimal
and equals that of noise. So instead of looking for a muscle activ-
ity detection to estimate the noise, one can track for minimum pe-
riodogram. Its length is chosen wide enough to bridge the broadest
peak in any muscle signal:

Pmin(m, l) =Min (P(r, l) m−Dmin < r ≤ m) , (4)

where Dmin is chosen to bridge muscle activity presence periods (2
seconds in this case) and to follow the non stationarity of noise.

The problem with Pmin(m, l) is that it is biased towards lower
values. In fact, the minimum periodogram estimation is smaller than
the average value. The compensation of this limitation is obtained
by multiplying with a bias factor Rmin(m) which is derived from
the statistics of the local minimum. The noise periodogram estimate
can be written as follows:

|N̂(m, l)|2 = Rmin(m, l)Pmin(m, l). (5)

Rmin(m, l) depends on past bias factor, previous noise estimation,
minimum periodogram and muscle activity presence [7].

Fig. 4 plots examples of spectra at different steps of the al-
gorithm. The original spectrum |Y(m, l)|2 and the spectrally
smoothed one P(m, l) (Eq. 2) are shown in the upper sub-figure.
The temporally smoothed spectrum P(m, l) (Eq. 3) and the esti-
mation of the noise spectrum |N̂(m, l)|2 (Eq. 5) are shown in the
lower sub-figure. We can see that: i) the spectral smoothing allows
to closely follow the peaks of original noisy spectrum and ii) the
estimated noise recover the details of the harmonic structure of the
noisy EMG. In fact, the peaks are due to the noise and not to the
EMG signal.

3.3. Muscle activity detection

The muscle activity detection is an important task to refine the esti-
mation of the bias factorRmin(m) and then the noise spectrum. The
purpose is to find a binary variable which equals one when muscle

Fig. 5. Muscle activity detector superposed to the force signal.

activity takes place and zero in the opposite case. The approach used
in this work is based on the hypotheses testsH0(m, l) andH1(m, l)
of respective muscle rest and muscle activity:

H0(m, l) : |Y(m, l)|2 = |N(m, l)|2
H1(m, l) : |Y(m, l)|2 = |S(m, l)|2 + |N(m, l)|2. (6)

The decision on which hypothesis to believe is obtained by find-
ing connected time-frequency regions of EMG activity [8]. In fact,
the individual EMG presence detection, for each frame and for each
frequency separately, provides individual decisions which are not
systematically coherent between them. The original idea in [8] is to
identify quite-large regions which are characterized by an increase
in noisy periodogram. In fact, an increase is equivalent to a begin-
ning of muscle activity after a rest period. An approach based on
the comparison between the noisy periodograms and the minimum
estimated one Pmin(m, l) can resolve the problem.

Fig. 5 illustrates the resulting Muscle Activity Detector (MAD)
using the explained approach. It is superimposed to the force applied
during the muscle activity (handgrip exercice). One can note that
the muscle activity is completely detected. Moreover, the pre-motor
activity is also detected. It occurs during the time interval when the
exercise has not yet started but the brain prepared it and sent the
command to the muscle.

3.4. Noise reduction

The restoration of the muscle spectrum |Ŝ(m, l)|2 is obtained
through the subtraction of the estimated noise spectrum from the
noisy signal spectrum:

|Ŝ(m, l)|2 =


|Y(m, l)|2 − |N̂(m, l)|2

if |Y(m, l)|2 ≥ |N̂(m, l)|2

λ|N̂(m, l)|2 otherwise
(7)

The parameter λ controls the amount of background noise to be
kept when the noise estimation exceeds the observation.

The restored EMG signal is obtained by inverse Fourier trans-
form (IFFT) of the enhanced magnitude spectrum combined with
the phase of the original noisy amplitude spectrum. In fact, the clean
EMG phase is unknown, that is why it is approximated by the avail-
able one.
The samples of the each denoised EMG frame can be expressed as:

ŝ(m,n) = IFFT
[
|Ŝ(m, l)|.ejarg(Y(m,l))

]
. (8)



4. DENOISING RESULTS

4.1. Dataset

The EMG data under fMRI were recorded from four forearm mus-
cles which are the common extensor muscle, the brachioradialis, the
flexor superficialis and the flexor profundus. The EMG measure-
ments were performed using the BIOPAC MP150WSW MRI com-
patible system with a sampling frequency of 1000 Hz. Volunteers
performed three successive runs. In each run, five contractions of
4.4 seconds duration are preceded by a preparation time interval of
6.6 seconds and followed by a relax interval of 44 seconds. The three
runs differ by the instruction given to activate muscle:
• Verbal instruction: an external voice signal is emitted to launch
the beginning of the contraction and is followed by verbal encour-
agement.
• A triggered instruction: a voice signal is used to activate the mus-
cle but it is not followed by encouragement.
• Self-controlled instruction: the beginning and the ending of the
contraction is initiated by the subject himself.

4.2. Simulation tests

In order to check the validity and the precision of the proposed de-
noising approach, both clean and fMRI noisy EMG signals are ac-
quired separately. The first noise is acquired in normal conditions
while the second one is acquired under fMRI but no muscle activity
task is done. The two observations are added together according to
the model of Eq.1. The denoising approach is applied and two tem-
poral criteria are used for evaluation. The first one is the overall Sig-
nal to Noise Ratio SNR calculated for the whole signals including
muscle activity and rest intervals. The second one is the segmental
Signal to Noise Ratio SSNR calculated exclusiveley during muscle
activity:

SNR = 10 log10


L∑
k=1

s(k)2

L∑
k=1

e(k)2

 , (9)

SSNR =
1

M

M∑
m=1

10 log 10


N∑
i=1

s(m, i)2

N∑
i=1

e(m, i)2

 , (10)

where L is the total number of samples, M is the total number of
effective muscle activity frames, m is the frame index of size N . k
(resp. i) is the temporal index of the whole signal (resp. frame). The
signal denoted e is the perturbation. Before denoising, e is the noise
during acquisition. After denoising, it is the difference between the
clean EMG and the denoised one.

Fig. 6 gives the SNR and the SNR before (SNRin and
SSNRin) and after (SNRout and SSNRout) denoising for one
EMG signal. The rate of added noise is weighted by a factor α so
that the amount of noise can vary from the real level (α = 1) to a
reduced one (α = 0.1). From Fig. 6, one can notice the significant
improvement of both SNR and SSNR. The rate of improvement
varies from 5 dB for low level of noise (α = 0.1) to 16 dB for
high realistic level of noise (α = 1). This conclusion validates the
proposed denoising approach.

Fig. 6. Performance criteria before and after denoising in simulated
conditions.

4.3. Denoising technique validation

To evaluate the ability of the denoising algorithm to enhance the
EMG signal, the same handgrip exercice is carried out in the ambient
environment (outside the fMRI tunnel). The objective is to have a
reference EMG signal for comparison. The case of the common
extensor muscle is illustrated in the following figures.

Fig. 7 shows the temporal evolution of the noisy EMG, the
denoised one and the reference signal. One can notice that:
• the noise is well reduced and the enhanced signal has the same
look than the reference one.
• At the begining of each run, the noise level changes brutally and
the algorithm of noise estimation needs few seconds to estimate the
right quantity.
• At the end of the third contraction, there is a noise pulse which is
not removed because there is a abrupt change in noise level that the
algorithm is not able to detect.

Fig. 8 shows the spectrograms of the noisy EMG, the denoised
one and the reference signal. We can easily see the harmonic struc-
ture of noise (horizontal lines) and the noise-like structure of EMG
signal (vertical regions with homogenous contents. With the pro-
posed algorithm, the harmonic noise is well removed in low fre-
quency regions. But, it persists in intermediate frequency regions
(reduced but not totally removed). In the EMG signal acquired out-
side fMRI, one can notice the existence of an harmonic at 50 Hz
which is the interference with power lines.

One other method used to produce waveforms that are more eas-
ily analyzable than the direct EMG signal is the Root Mean Square
(RMS). It is a technique for rectifying the raw signal and convert-
ing it to an amplitude envelope which is very useful to estimate force
and muscle activation degree. The RMS is defined as follows:

RMS(m) =

√√√√ 1

N

N∑
i=1

s(m, i)2. (11)

Fig. 9 shows the evolution of the enhanced RMS and the ref-
erence one for four contractions of same type. It indicates that they
have the same duration. In terms of waveforms, big similarities ex-
ist, they are mainly due to muscle size, its position in the forearm
and the same handgrip exercise. Some differences exist and are due
to the electrodes placement, the modification in the way to do the
exercise, the environmental and residual noise,...



Fig. 7. Temporal EMG signals. (a): noisy, (b): enhanced, (c): refer-
ence

5. CONCLUSION

In this work, we have presented a technique for denoising an EMG
signal completely embedded in fMRI noise. The approach is based
on the estimation of the noise spectrum using time and spectral
smoothing and minimum statistics. The technique is tested with
artificial noisy EMG data and validated for real data. EMG of four
muscles of the forearm are considered and are shown to be clearly
enhanced thanks to the proposed approach. In the future, the en-
hanced EMG signal will be faced to the brain Blood Oxygenation
Level-Dependent (BOLD) extracted from fMRI images in order to
study the co-activation mechanism of brain and muscle during the
preparation of muscle task.
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