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ABSTRACT

Active contours or snakes are widely used for segmentation
and tracking. These techniques require the minimization of
an energy function, which is typically a linear combination of
a data-fit term and regularization terms. This energy function
can be tailored to the intrinsic object and image features. This
can be done by either modifying the actual terms or by chang-
ing the weighting parameters of the terms. There is, how-
ever, no sure way to set these terms and weighting parameters
optimally for a given application. Although heuristic tech-
niques exist for parameter estimation, often trial and error is
used. In this paper, we propose a probabilistic interpretation
to segmentation. This approach results in a generalization of
state of the art active contour segmentation. In the proposed
framework all parameters have a statistical interpretation, thus
avoiding ad hoc parameter settings.

Index Terms— Active contours, segmentation, convex
optimization, statistical estimator

1. INTRODUCTION

Since Kass et al. [1] introduced the active contours, the frame-
work has become a constant recurring topic in segmentation
and tracking literature [2, 3, 4, 5, 6]. In the active contour
framework, an initial contour is moved and deformed in order
to minimize a specific energy function. This energy function
should be minimal when the contour is delineating the ob-
ject of interest. Two main groups can be distinguished in the
active contour framework: one group representing the active
contour explicitly as a parametrized curve, a second group of
techniques represent the contour implicitly, e.g. using level-
sets. In the first group, also called snakes, the contour com-
monly converges towards edges in the image [1, 5]. The sec-
ond group generally has an energy function based on region
properties, such as the variance of intensity of the enclosed
segment [3, 7]. These level-set approaches have gained a lot
of interest since they have some benefits over snakes. For
example, they don’t need any parametrization and can easily
change their topology, e.g. splitting a segment into multiple
unconnected segments.

Level-set based techniques have some benefits over
parametrized active contours, but they still have one ma-
jor drawback in common: the energy function is generally
non-convex, thus the end result depends on the initialization.
This can be overcome by choosing a different representation
than level-sets to represent the contour. By representing the
contour using a characteristic function, i.e. a binary function
where one represents a foreground pixel and a zero corre-
sponds with a background pixel, a convex energy function
can be found which minimizes the popular active contours
without edges (ACWE) [8, 3]. This convexity allows for gen-
erally faster and global optimization of the energy function
[4, 6]. The benefit is that their results no longer depend on
the initialization.

While the active contour framework shows good results
for numerous applications, it is not always straightforward to
tune the parameters in order to get an optimal result. Some
work has interpreted the active contour framework using
probability theory [9, 2, 10], giving a probabilistic mean-
ing to the parameters. These methods show good results,
avoiding ad hoc parameter settings, but these approaches are
either limited to parametric active contours or restricted to
specific shape priors. The parametric active contours restrict
the methods to segmentation of objects with fixed topology
and good initialization. Geometric active contours with a
probabilistic approach either limit the usability by imposing
strong but restrictive shape priors [9], or start from a proba-
bilistic interpretation for the data-fit but but use generic shape
energies without any probabilistic interpretation, thus return-
ing to ad hoc parameter tuning [11]. In this work we propose
a probabilistic interpretation for geometric global optimal ac-
tive contours. In contrast to many methods in literature, both
the data-fidelity and the shape prior are statistically modelled
within our framework. The proposed method corresponds to
the minimization of a convex energy term where all parame-
ters have a statistical interpretation. This allows to calculate
the optimal parameters from a training data set.

This paper is arranged as follows: the next section pro-
vides a brief description of convex energy active contours. In
section 2 our proposed algorithm is presented, while the sec-



tion 3 elaborates on the optimization of our proposed method.
Section 4 shows some results of our technique. Section 5 re-
capitulates and concludes.

2. PROBABILISTIC ACTIVE CONTOURS

While the active contour framework has been proven useful
for segmentation [12, 13, 14], it is not straightforward to de-
fine optimal parameters. Furthermore many alternative regu-
larization terms and data-fit energy terms have been proposed.
This makes it difficult to define a good energy function for a
given segmentation problem. We look at a segmentation prob-
lem as an inverse problem, which we solve using estimation
theory. Assume that an image is the result of a function, g(.),
which maps pixels belonging to a segment to a specific inten-
sity, while mapping background pixels to different intensities.
This model is not perfect, e.g. there can be noise in the image
or blur or other objects might be visible in the image, which
are not of interest for the end user, etc. We include these dis-
crepancies in the model as noise, n(.). The image f(.) can be
defined as:

f(~x) = g(u(~x)) + n(u(~x)) (1)

with u(.) a characteristic function, i.e. a binary function
which has results one for pixels belonging to the segment, and
zero for all other pixels. Note that we consider the noise to be
dependent on the segmentation. Using eq. (1), an optimal
segmentation result can then be calculated in a Maximum A
Posteriori (MAP) sense as:

û(.) = arg max
u(.)∈S

log p
U

(
u(.)

)
+ log p

F |U

(
f(.) | u(.)

)
(2)

Where S represents the set of characteristic functions. The
quality of the segmentation resulting from this MAP estima-
tor strongly depends both on the knowledge of the mapping
function, g(.), on the noise of the model, n(.), and on the
prior knowledge that can be used on u(.). We will discuss
different priors and image and noise models in the next two
subsections.

2.1. Likelihood

Assume a simple piecewise constant data-fit model, i.e. that
an image has a constant value for the segment pixels and a
different constant value for all background pixels. This results
in the following image model:

g(a) =

{
µf if a = 1

µb if a = 0
(3)

We assume that the noise statistics on this model can dif-
fer between segment pixels and background. If we model the
noise for both segment and background using a Normal dis-
tribution, then the likelihood of f(.) corresponds to:
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(4)
Since we assume that u(.) represents a characteristic func-

tion, i.e. u(~x) ∈ {0, 1} , we can rewrite the log likelihood as
follows
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with c a constant independent of u(~x), thus we can ignore
this constant with regard to the MAP estimator. Note that for
σf = σb that this comes down to the same data-fit term used
in the piecewise constant Mumford-Shah model [8]. This also
gives a statistical interpretation for the weighting parameter
in the ACWE model [3, 4]. This probabilistic interpretation
is more general than the model used in the ACWE model, i.e.
the model allows different variances for segment and back-
ground noise. If the variance of the segment noise is bigger
than the background noise, i.e. σf > σb, then a positive bias
is added for all foreground pixels, thus favoring foreground
pixels in the MAP estimator. If this model is used in a maxi-
mum likelihood estimator (ML) instead of a MAP estimator,
i.e. without any prior knowledge on u(.), this actually comes
down to hard thresholding.

2.2. Segmentation prior

The quality of the MAP estimator will depend on the prior
used. While many shape priors exist for specific applica-
tions, we will restrict our priors to simple but generic pri-
ors. Common generic shape priors use the area, m1, and
perimeter,m2, of the detected objects [8, 3]. For a continuous
characteristic function, i.e. a binary function, these measure-
ments can respectively be expressed asm1(u(.)) = |u(.)| and
m2(u(.)) = |∇u(.)| (see [15] for more details). In this work
we model the probability of the area/perimeter of a segment
using a generalized Laplacian, i.e.
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where Γ(x) represents the Gamma function, i.e. Γ(x) =´∞
0
tx−1e−tdt. For simplicity we assume that area and

perimeter are independent of each other. This results in the
following segmentation prior:
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Note that since u(~x) is positive for all ~x, that the term
related to m1(u(.)) is convex. However the term related to
m2(u(.)) is not necessarily convex. In practice the ML es-
timator of u(.) generally results in a segment with a bigger
perimeter than the real object of interest. This is due to noise,
clutter, blur, etc. By assuming that the perimeter of u(.) is
bigger than µ2, we can simplify ex. (7) to the following con-
vex prior:
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with c a constant independent of u(.), thus irrelevant with
regard to the MAP estimator.

3. OPTIMIZATION

Combining the likelihood of eq. (5) and the prior in eq. (8)
results in the following MAP estimator:

û(.) = arg min
u(.)∈S
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Since all parameters have a statistical interpretation, they
can easily be estimated based on a small training data set.
Note that S, the set of binary functions, is a non convex set. In
[4, 16] this problem was circumvented by relaxing the binary
constrained to functions with co-domain equal to [0, 1], thus
optimizing over the convex set S′. After finding the optimal
û(.), the function is binarised by thresholding the function.
This binarised version is also a global optimizer of eq. (9) un-
der specific conditions (This is proven in [17]), but even when
these conditions were not met, the binarised version showed
good segmentation results. Although the optimization strat-
egy is generic for all βi, the actual optimization scheme, i.e.
the explicit formulas depend on βi. As an example, we will
consider the situation where βi = 1, i.e. where the prior is
modeled using Laplacian distributions. Then the MAP esti-
mator in (9) can be rewritten using the matrix-vector formu-
lation:

~̂u = arg min
~u∈S′

(
||~u| − ~µ1|

α1

)
+
|∇~u|
α2

+
〈
~u,~r
〉
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Where ~µ1 represents a vector of the same length as ~u, with all
elements equal to µ1. Applying the Legendre-Frenchel trans-
form [18] results in the following primal dual formulation:

û(.) = arg min
u(.)∈S′

max
y∈Y

〈
~u,KH~y

〉
+
〈
~u,~r
〉

+ δY (~y) (12)

with ~y ∈ Y the dual variable, .H denotes the Hermitian trans-

pose, and K =

[
∇
I

]
. The function δY (.) denotes the indi-

cator function of the convex set Y:

δY (~y) =

{
0 if ~y ∈ Y
∞ if ~y /∈ Y

(13)

Where the convex set Y is given by:

Y = {~y ∈ Y : ‖~y −~b‖∞ ≤ 1}

with ~b =

[
~0
~µ1

]
. The primal dual formulation in eq. (12)

can be optimized using the following iterative steps:

~yn+1 = proxδ(~yn −K~zn) (14)
~xn+1 = prox<.,~r>(~xn −KH~yn+1) (15)
~zn+1 = ~xn+1 + θ(~xn+1 − ~xn) (16)

Since δY (.) is an indicator function of a convex set, the proxi-
mal operator reduces to pointwise Euclidean projectors on L2

balls [18]:

proxδ(~p) = ~b+
~p−~b

max(1, |~p−~b|)
(17)



The proximal operator corresponding with the inner product
can be calculated using the following closed formula:

prox<.,~r>(~p) = ~p− ~r (18)

4. EXPERIMENTAL RESULTS

The proposed framework is in the first place a statistical jus-
tification of the ACWE model, which already has proven its
merit for numerous applications [3, 4, 6]. However the pro-
posed work is more general than the ACWE model, which
assumes that the intensity variance of segments should be
equal to the intensity variance of the background. The pro-
posed work is not hampered by this constraint. An example
of such an application is shown in Fig. 1(a). The figure shows
a fluorescence microscopy image of pathological nuclei. Due
to certain pathologies, the cell nuclei does not have a sharp
boundary, but appears frayed. This results in higher variance
in intensity for segment pixels. The background however only
has low variance in the background. The segmentation result
using the convex energy ACWE model [4] is shown in Fig.
1.(b). The expected intensity for segment and background
pixels are estimated from a manually annotated training data-
set. The weighting parameters were empirically chosen to get
the best result. The result of the proposed method is shown in
Fig 1.(c). The segmentation is more accurate, which can be
seen at the thin section of the lower nucleus at the left, or at
the fraying part of the two right nuclei.

For a qualitative validation of the segmentation results,
we use the Dice coefficient as a quality metric. If S is the
resulting segment from the active contour and GT the ground
truth segment, then the Dice coefficient between S and GT
is defined as: d(S,GT ) = 2 Area(S∧GT )

Area(S)+Area(GT ) where S ∧ GT
consist of all pixels which both belong to the detected seg-
ment as well as to the ground truth segment. If S and GT are
equal, the Dice coefficient is equal to one. The Dice coef-
ficient will approach zero if the regions hardly overlap. We
analyzed a larger data-set containing 28 nuclei. These nuclei
where manually delineated in order to get ground truth. The
proposed method resulted in an average Dice coefficient of
0.973, compared to an average Dice coefficient of 0.957 us-
ing the classical ACWE model.

5. CONCLUSION

This paper proposes a statistical interpretation to the famous
geometric active contour framework. The work describes the
segmentation problem as an inverse problem. This approach
results in a generalization of the ACWE model, where all pa-
rameters have a statistical interpretation, thus avoiding ad hoc
parameter tuning. The segmentation result can be calculated
using an efficient optimizer based on primal-dual optimiza-
tion. The method described is the result of assuming specific
distributions for the noise on the model. However the same

reasoning can be applied for other noise distributions. This
allows to calculate specific active contour models, based on
the statistics of both the objects of interest and on the statis-
tics of the image. Furthermore we would like to emphasise
that this is a generic framework. We used a Gaussian model
for intensity modeling and simple shape priors such as area
and perimeter. However other shape priors and other proba-
bility distributions could be used as well. Another possible
extension is not to model the global intensity but local inten-
sity or local features such as texture could be incorporated in
our statistical framework.
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