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ABSTRACT

Current EEG applications imply the need for low-latency,
low-power, high-fidelity data transmission and storage algo-
rithms. This work proposes a compression algorithm meeting
these requirements through the use of modern information
theory and signal processing tools (such as universal cod-
ing, universal prediction, and fast online implementations of
multivariate recursive least squares), combined with simple
methods to exploit spatial as well as temporal redundancies
typically present in EEG signals. The resulting compression
algorithm requiresO(1) operations per scalar sample and sur-
passes the current state of the art in near-lossless and lossless
EEG compression ratios.

Index Terms— EEG compression, lossless compression,
near-lossless compression, low-complexity

1. INTRODUCTION

Data compression is always of paramount importance when
dealing with data sources which produce large amounts of
data, due to the potentially large savings in storage and/or
transmission costs. Electroencephalography (EEG) is no ex-
ception, with modern equipments that produce signals of up
to 256 channels of up to 32 bits per sample (bps) each, sam-
pled at frequencies up to 1000hz.

Some important applications of EEG include real-time
monitoring of patients and individuals in their everyday ac-
tivities (not confined to a bed or chair), and Brain-Computer
Interfaces (BCI), where users can interact with computers
or prosthetic body parts by activating certain regions of the
brain. In such contexts, wireless and self-powered EEG ac-
quisition devices are desirable, which imposes severe power
consumption restrictions that call for efficient bandwidth use
and simple embedded logic.

The requirements imposed by these applications, namely,
low-power, and efficient on-line transmission of the EEG
data, naturally lead to a requirement of low-complexity, and
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low-latency, compression algorithms. Also, as it is typical
in medical applications, data acquired for clinical purposes
(e.g., real-time monitoring of epileptic patients) is often re-
quired to be transmitted and/or stored without or at worst
with very small distortion with respect to the data that was
acquired by the sensors. This in turn leads to a need for loss-
less or near-lossless algorithms, where every decoded sample
is guaranteed to differ by up to a preestablished bound from
the original sample.

1.1. Main contribution

To satisfy the above requirements, the present work proposes
a sequential, low-latency, low-complexity, lossless/near-
lossless EEG compression algorithm, which combines several
state-of-the art tools and developments in signal processing
and data compression. The algorithm uses a novel method
to exploit in combination the potential redundancy appearing
across samples at different times (temporal redundancy) and
the redundancy among samples obtained from different chan-
nels during the same sampling period (spatial redundancy).

The resulting algorithm surpasses current state of the art
in lossless and near-lossless EEG compression, at a fraction
of the computational cost required by competing algorithms
such as [1–5]. The design relies on well-established theoreti-
cal tools from universal compression [6,7] and prediction [8],
and the results are backed by extensive experimentation.

1.2. Background on EEG compression

Recent years have seen significant activity in EEG compres-
sion and, in particular, in the lossless, multi-channel setting.
As is commonly the case in lossless compression, most meth-
ods (both single and multichannel) are based on a predic-
tive stage for removing temporal and/or spatial correlations.
This produces a predicted signal, which is then subtracted
from the original signal to obtain a prediction error that is
encoded losslessly [2, 3, 9, 10]. Among prediction methods,
typical choices include linear predictors [2], and neural net-
works [9]. After correlation is (hopefully) removed by the



prediction stage, residuals are encoded according to some sta-
tistical model. Typical choices include arithmetic and Huff-
man encoding. A non-predictive example, which uses a loss-
less variant of the typical transform-based methods used in
lossy compression for temporal decorrelation is given in [1].

When moving to the multi-channel case, a spatial decor-
relation stage is included to account for inter-channel redun-
dancy. In this case, most lossless and near-lossless algorithms
found in the literature resort to transform-based approaches to
remove spatial redundancy. This includes the case just men-
tioned, [1], and the works [4, 5], where a lossy transform is
used for simultaneous spatio-temporal decorrelation, and the
residuals are encoded losslessly or near-losslessly. In [4] this
is done using a wavelet transform, whereas [5] uses a PCA-
like decomposition. As an example of a non-transform based
method, the work [11] decorrelates a given channel by sub-
tracting, from each of its samples, a fixed linear combination
of the samples from neighboring electrodes corresponding to
the same time slot.

In general, the focus of modern multi-channel lossless
EEG compression algorithms lies in the decorrelation stage.
In relation to the objectives posed in this work, we note that
some of the aforementioned algorithms require a number of
operations that is superlinear in the number of channels and,
in some cases [4, 5], also superlinear in the number of time
samples per channel. The adaptive transform methods also
have the drawback of having to perform more than one pass
over the data to be compressed, thus being unsuitable for real-
time transmission of EEG data.

In contrast, in Section 2, we propose a compression algo-
rithm whose execution time is linear in both the number of
channels and time samples requiring an amount of memory
that is linear in the number of channels. Moreover, since it
uses a causal predictive strategy both for temporal and spatial
decorrelation, it is sequential and exhibits low latency (the
samples are encoded as soon as they are received). In Sec-
tion 3, we provide experimental evidence on its performance,
along with a detailed discussion and conclusions based on
such evidence.

2. STATISTICAL MODELING AND ENCODING

We consider a discrete time m-channel EEG signal, m > 1.
We denote by xi(n) the i−th channel sample at time instant
n, n ∈ N. We assume that all signal samples are quantized to
integer values in a finite interval X .

We follow a predictive coding scheme, in which a predic-
tion x̂i(n) is sequentially calculated for each sample xi(n),
and this sample is described by encoding the prediction error,
εi(n) , xi(n)− x̂i(n). The sequence of sample descriptions
is causal, i.e., the order in which the samples are described,
and the definition of the prediction x̂i(n), are such that the lat-
ter depends solely on samples that are described before sam-
ple xi(n). Thus, a decoder can sequentially calculate x̂i(n),

decode εi(n), and add these values to reconstruct xi(n). A
near-lossless encoding is readily derived from this scheme by
quantizing the prediction error εi(n) to a value ε̃i(n) that sat-
isfies |εi(n)− ε̃i(n)| ≤ δ, for some preset parameter δ. After
adding ε̃i(n) to x̂i(n), the decoder obtains a sample approx-
imation, x̃i(n), whose distance to xi(n) is at most δ. In this
case, the prediction x̂i(n) may depend on the approximation
of previously described samples, but not on the exact sample
values, which are not available to the decoder.

The aim of the prediction step is to produce a sequence
of prediction errors that, according to some preestablished
probabilistic model, exhibit typically a low empirical en-
tropy, which is then exploited in a coding step to encode the
data economically. In our encoder we use an adaptive lin-
ear predictor, in line with the classical use of autoregressive
models as a statistical modeling tool for EEG data [12]. We
model prediction errors by a two-sided geometric distribution
(TSGD), for which we empirically observe a good fitting to
the data, and can be efficiently encoded with adaptive Golomb
codes [6, 13].

In an (independent channel) autoregressive model (AR)
of order p, p ≥ 0, every sample xi(n), n > p, is the result
of adding independent and identically distributed noise to a
prediction

x̂pi (n) =

p∑
k=1

ai,kxi(n− k) , 1 ≤ i ≤ m, (1)

where the real coefficients ai,k are model parameters, which
determine, for each channel i, the dependance of xi(n) on
previous samples of the same channel. The prediction in a
multivariate autoregressive model (MVAR) is

x̂pi (n) =

m∑
j=1

p∑
k=1

ai,j,kxj(n− k) , 1 ≤ i ≤ m, (2)

where now the model parameters ai,j,k define, for each i, a
linear combination of past samples from all channels and,
thus, it may potentially capture both time and space signal
correlation. Indeed, for EEG data, we experimentally ob-
serve that the minimum mean square prediction error (MSE),
where model parameters are obtained as the solution to a least
squares minimization, are in general significantly smaller for
an MVAR model than an AR model. The average MSE, for
an MVAR model of order 3, over all files and channels of the
database DB1a (detailed in Section 3), for example, is 46% of
the average MSE for an AR model of the same order.

Modern electroencephalographs, however, can record
several tens of channels and, therefore, the number of model
parameters in (2) may be very large. As a consequence, since
these parameters are generally unknown a priori, MVAR
models may suffer from a high statistical model cost [7],
which may offset in practice the potential code length savings
that could stem from accurate prediction. Nevertheless, a
close inspection of EEG databases reveals that, for a fixed
model order p, we obtain an MSE almost as small as that



obtained with an MVAR model if the prediction x̂pi (n) is a
linear combination of the p most recent past samples from
two channels, i, `, where ` is a channel whose recording elec-
trode is physically close to that of channel i. Moreover, the
MSE for channel i is considerably lowered if, besides past
samples from channels i, `, we also use the sample at time
instant n of channel ` to predict xi(n) (assuming causality is
maintained, as will be discussed below), i.e.,

x̂pi (n) =

p∑
k=1

ai,kxi(n− k) +
p∑
k=0

bi,kx`(n− k) . (3)

The average MSE obtained with (3) and p = 3 for database
DB1a, for example, is 60% of the average MSE for an MVAR
model of order 3.

The predictor in our encoder relies on this observation.
However, since, as mentioned, the sequence of sample de-
scriptions must be causal with respect to the predictor, not all
predictions x̂i(n) can depend on a sample at time n. We next
define an order of description that satisfies this constraint and
seeks to minimize, for each channel except the one whose
sample is described first, the distance between its electrode
and the closest electrode of channels whose samples are de-
scribed before.

Let T be a minimum spanning tree of the complete graph
whose set of vertices is the set of channels, {1 . . .m}, and
each edge (i, j) is weighted with the distance between
electrodes of channels i, j. In other words, the sum of
the distances between electrodes of channels i, j, over all
edges (i, j) of T , is minimum among all trees with vertices
{1 . . .m}. We distinguish an arbitrary channel r as the root,
and we let the edges of T be oriented so that there exists
a (necessarily unique) directed path from r to every other
vertex of T . Since a tree has no cycles, the edges of T in-
duce a causal sequence of sample descriptions, for example,
by arranging the edges of T , e1 . . . em−1, in a breadth-first
traversal order. After describing a root channel sample, all
other samples are described in the order in which their chan-
nel appear as the destination of an edge in the sequence
e1 . . . em−1. Notice that since T depends on the acquisition
system but not on the signal samples, this description order
may be determined off-line. The sample xr(n) is predicted
based on samples of time up to n − 1 of the channels r, i,
where (r, i) is the edge e1; all other predictions, x̂i(n), i 6= r,
depend on the sample at time n of channel ` and past samples
of channels `, i, where (`, i) is an edge of T .

Algorithm 1 summarizes the proposed encoding. We let
xi(n) = xi(1) . . . xi(n) denote the sequence of the first n
samples from channel i, and we let fi be an integer valued
prediction function to be defined.

As mentioned, we use adaptive Golomb codes for the en-
coding of prediction errors in steps 4 and 8. To this end, an
independent set of prediction error statistics is maintained for
each channel. The statistics collected up to time n − 1 de-
termine the order of a Golomb code [13], which is combined

for n = 1, 2, . . . do1

Let (r, i) be edge e1 of T2

x̂r(n) = fr(xr(n− 1),xi(n− 1))3

Encode εr(n)4

for k = 1 . . .m− 1 do5

Let (`, i) be edge ek of T6

x̂i(n) = fi(xi(n− 1),x`(n))7

Encode εi(n)8

end9

end10

Algorithm 1: Coding algorithm.

with a Rice mapping [14] from integers to nonnegative inte-
gers to encode the prediction error at time n as in [15].

To complete the description of our encoder, we next define
the prediction functions, fi, 1 ≤ i ≤ m, which are used
in steps 3 and 7 of Algorithm 1. For a model order p, we
let api (n) = {ai,k(n), bi,k(n)} denote the set of coefficient
values, ai,k, bi,k, that, when substituted into (3), minimize
the total weighted squared prediction error up to time n

Epi (n) =

n∑
j=1

λn−j
(
xi(j)− x̂pi (j)

)2
, (4)

where λ, 0 < λ ≤ 1, is an exponential decay factor parameter.
A sequential linear predictor of order p uses the coefficients
api (n− 1) to predict the sample value at time n as

ẋpi (n)=

p∑
k=1

ai,k(n−1)xi(n−k)+
p∑
k=0

bi,k(n−1)x`(n−k) , (5)

and, after having observed xi(n), updates the set of coeffi-
cients from api (n − 1) to api (n) and proceeds to the next se-
quential prediction. This determines a total weighted sequen-
tial prediction error defined as

Epi (n) =
n∑
j=1

λn−j
(
xi(j)− ẋpi (j)

)2
. (6)

Notice that each prediction ẋpi (j) in (6) is calculated with a
set of model parameters, api (j − 1), which only depends on
samples that are described before xi(j) in Algorithm 1. This
model parameters vary, in general, with j (cf. (4)).

A suitable model order for EEG modeling may vary de-
pending on signal characteristics [16]. However, numerous
lattice algorithms have been proposed to efficiently calculate
api (n) from api (n − 1) simultaneously for all model orders
p, up to a predefined maximum order P (see, e.g., [17] and
references therein). Therefore, following [8], we do not fix
nor estimate any specific model order but we instead average
the predictions of all sequential linear predictors of order p,
0 ≤ p ≤ P , exponentially weighted by their prediction per-
formance up to time n− 1. Specifically, for i 6= r, we define

fi(xi(n− 1),x`(n)) =

⌊
1

M

P∑
p=0

µp(n)ẋ
p
i (n)

⌉
, (7)



where b·e denotes rounding to the nearest integer within the
quantization interval X , µp(n) = exp{− 1

cE
p
i (n − 1)}, c is a

constant that depends onX [8], andM is a normalization fac-
tor that makes µp(n) sum up to unity with p. The per-sample
normalized prediction error of this predictor is asymptotically
as small as the minimum normalized sequential prediction er-
ror among all linear predictors of order up to P [8]. The
definition of fr is analogous, removing the terms in k = 0
from (3) and (5), and letting the summation index p in (7)
take values in the range 1 ≤ p ≤ P + 1.

In a near-lossless setting, steps 4 and 8 encode a quantized
version, ε̃i(n), of each prediction error, εi(n), defined as

ε̃i(n) = sign(εi(n))
⌊
|εi(n)|+ δ

2δ + 1

⌋
, (8)

which guarantees that the reconstructed value, x̃i(n) ,
x̂i(n) + ε̃i(n)(2δ + 1), differs by up to δ from xi(n). All
model parameters and predictions are calculated with x̃i(n)
in lieu of xi(n).

The overall encoding and decoding time complexity of
the algorithm is linear in the number of encoded samples.
Indeed, a Golomb encoding over a finite alphabet requires
O(1) operations and, since the set of predictions ẋpi (n),
0 ≤ p ≤ P , can be recursively calculated executing O(1)
scalar operations per sample [17], the sequential computa-
tion of fi requires O(1) operations per sample. Regarding
memory requirements, since each predictor and Golomb en-
coder requires a constant number of samples and statistics,
the overall memory complexity of a fixed arithmetic precision
implementation of the proposed encoder is O(m).

3. EXPERIMENTS, RESULTS AND DISCUSSION

We evaluate our algorithm for lossless (δ = 0) and near-
lossless (δ > 0) compression of several publicly available
EEG databases:
• DB1a and DB1b [18,19]: 64-channel, 160Hz, 12bps EEG

of 109 subjects using the BCI2000 system. Recordings
are divided in 1-minute calibration (DB1a) and 2-minute
motor imagery task (DB1b).

• DB2a and DB2b [20] (BCI Competition III1): 118-
channel, 1000Hz, 16bps EEG of 6 subjects performing
motor imagery tasks (DB2a). DB2b is a 100Hz down-
sampled version of DB2a.

• DB3 [21] (BCI Competition IV2): 59-channel, 1000Hz,
16bps EEG of 7 subjects performing motor imagery tasks.

• DB4 [22]: 31-channel, 1000Hz, 16bps EEG of 15 subjects
performing image classification and recognition tasks.
For each database we compress each data file separately

and we calculate the compression ratio (CR) as kN/n, where

1http://bbci.de/competition/iii/
2http://bbci.de/competition/iv/
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Fig. 1. CR obtained for each value of δ and all databases. The
plots of DB1a and DB1b overlap.

N is the the sum of the number of scalar samples over all
files of the database, k is the number of bits used in sample
quantization, and n is the sum of the number of bits over all
compressed files of the database. For testing we set P = 7,
λ = 0.99, and a baseline value c = 32 (c is doubled whenever
M falls below a small threshold, to improve numerical stabil-
ity in (7)). The specific selection of the root channel r did not
have any significant impact on the results of our experiments.

Table 1. CR of Alg. 1 and largest CR in [4,5] (in parenthesis).
δ DB1a DB1b DB2a DB2b DB3 DB4

0 2.54 (2.14) 2.48 3.03 2.28 (1.94) 2.92 (1.51) 4.55
5 6.05 (4.78) 6.05 6.68 4.43 (3.36) 6.44 (2.27) 9.16

10 7.74 (6.63) 7.78 8.56 5.72 (4.15) 8.35 (2.63) 10.78

The compression ratio, for each database and for differ-
ent values of δ, is shown in Table 1 and plotted in Figure 1.
In most of the reviewed literature, the performance of com-
pression algorithms are tested with proprietary EEG data,
which makes a direct comparison difficult. This is not the
case with the recent works published in [4, 5], where several
compression algorithms are tested with EEG data taken from
databases DB1a, DB2b, and DB3. Table 1 also shows, in
parenthesis, the largest compression ratio reported in [4, 5].

As Table 1 shows, the compression ratios obtained with
the proposed method are significantly better than those ob-
tained in [4, 5] in all cases. Moreover, the algorithms de-
scribed in [4, 5] are multi-pass, and thus not suited to real-
time compression of EEG data. Our algorithm is sequential
and very efficient; compressing all files in databases DB1a
and DB1b, which represent more than 2800 minutes of EEG
recording, requires about 10 minutes in a modern PC. On the
other hand, a progressive precision transmission application
is suggested in [4, 5], which we did not explore. Such ap-
plication could be implemented by combining the proposed



near-lossless compression algorithm with a suitable compres-
sion of the signal residual.
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