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ABSTRACT

Conventional beamformer design assumes that the phase
differences between the received sensor signals are a de-
terministic function of the array and source geometry. In
fact however, these phase differences are subject to random
variations arising both from source and sensor position uncer-
tainties and from fluctuations in sound velocity. We present
a framework for modelling these uncertainties and show that
improved beamformers are obtained when they are taken into
account.

Index Terms— robust beamforming, distributed array,
SNR beamformer, steering vector mismatch

1. INTRODUCTION

Conventional signal independent beamforming relies on the
assumption that phase differences between the received sen-
sor signals are a deterministic function of the source and sen-
sor geometry. However, in practice, there are random de-
viations in the propagation paths and element positions that
we cannot control and these result in additional correlated
phase shifts in each channel. If we ignore these deviations,
these phase shifts will degrade the performance of the beam-
former [1]. By modelling these deviations, we can construct
beamformers that are robust to these random phase changes.

Element position errors occur when the sensors or source
locations are not precisely known. The errors cause a change
in propagation distance and phase differences, in a similar
way to steering vector mismatches. By identifying which el-
ement locations are less well defined than others we are able
to utilise the most reliable sensors to avoid large phase uncer-
tainties.

There are two main approaches to addressing this prob-
lem. In circumstances where the wanted signal can be clearly
distinguished from the noise, it is possible to use adaptive
signal-dependent methods to adjust the beamformer coeffi-
cients. When this is not the case however, it is necessary to
use a signal-independent method that is robust to modelling
uncertainties.

There have been several approaches in the literature to
address this problem. Beamformers with improved robust-
ness to array placement errors and steering errors have been

designed by considering microphone phase errors [2–4].
Derivative constraints have been used to prevent small de-
viations in the steering vector causing large degradation in
performance [2, 5–8]. Diagonal loading of the array covari-
ance matrix has been used to increase robustness to correlated
errors [9–12]; this is similar to applying a constraint on the
white noise gain [10]. Other signal dependent methods have
involved iteratively converging to maximise the steering vec-
tor power [13–16]. Most robust beamformers consider uncor-
related error terms which appear on the diagonal of the array
autocorrelation matrix. However beamformers that are robust
to steering vector mismatches are not necessarily robust to
any other type mismatch [17].

Channel uncertainty errors cause correlated errors terms.
Modelling channel uncertainties is especially important when
using distributed beamformers with widely separated sensors.
It is a common assumption that the channel propagation speed
between a source and two different sensors is identical. How-
ever when the arrays are far apart this no longer applies [18].
Because the channels may be widely separated in space, the
variations can become large enough to cause phase differ-
ences that degrade the performance of the beamformer.

These considerations apply to any situation where there is
uncertainty in wave propagation speed. For example, in the
field of medical imaging, ultrasound scans can be adversely
affected by speed-of-sound errors [19] and in sonar systems
the propagation speed may vary greatly [20, 21].

Uncertainties in sensor positions or channel propagation
speeds result in phase uncertainties whose magnitude is pro-
portional to frequency. Thus the higher the frequency the
larger the deviations and the less reliable is the corresponding
sensor. In this paper we model these correlated and uncor-
related variations. Using these uncertainties we can design a
more robust beamformer that utilises the most reliable sensors
at each frequency.

2. BEAMFORMER WEIGHTS DESIGN

In each frequency band, k, we derive the beamformer output,
y, as the weighted sum of the array data, x:

y(k) =w(k)Hx(k),



where w(k) is a vector of complex-valued weights. Since
each frequency band is processed independently, the fre-
quency index, k, has been omitted in most places in the
remainder of this paper for clarity. We model the array data
as follows:

x = Ds + v, (1)
v = vs + vd, (2)

where D ∈ CM×P are complex propagation coefficients
from P sources to M sensors, s ∈ CP×1 is the source data,
vs ∈ CM×1 is white Gaussian sensor noise and vd ∈ CM×1

is spatially diffuse acoustic noise. The first source, s1, is
considered the desired source and the remaining sources,
s2,...,sP , are considered interferers.

Classical data-dependent beamformer weights are derived
as a function of the array data correlation,

〈
xxH

〉
, where

〈· · · 〉 denotes the expected value. In this paper, we extend
the array data model to introduce an unknown random phase
contribution to each of the propagation coefficients:

D = D� exp(jωkT), (3)

where � denotes element-by-element multiplication, ωk rep-
resents the angular frequency relating to frequency index k,
T represents the zero-mean Gaussian variations in the propa-
gation path time delays and D represents the propagation co-
efficients from the conventional deterministic model. Using
(1) and (3) we can expand
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where S =
〈
ssH

〉
. Assuming that all sources are independent

we have:

S = diag
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s21
〉
. . .
〈
s2P
〉)
.

We can expand the first term in (4) as〈(
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)
S
(
D� exp(jωkT)

)H〉
= A,

where the elements of A are now given by
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in which d̄ip and tip are elements of D and T respectively.
From the above we see that we need to determine the correla-
tions, 〈tiptjp〉, between the elements of T that represent the
propagation time uncertainties from source p to sensors i and
j respectively.

3. PATH UNCERTAINTIES

Variations in the propagation time from source p to sensors
i and j, tip and tjp, can arise from uncertainties in either
source/sensor locations or in channel propagation speed. We
assume these two effects to be independent so that the covari-
ance 〈tiptjp〉 may be expressed as a sum:

〈tiptjp〉 = 〈tiptjp〉S + 〈tiptjp〉C . (6)

We discuss these two terms separately below.

3.1. Position deviations

If we have a source at pp + p̄p and a sensor at mi + m̄i

where p̄p and m̄i are zero-mean deviations from the nominal
positions, then the change in path length due to p̄p and m̄i is
the component of (m̄i − p̄p) in the direction of (mi − pp):

δ(i, p) =
(mi − pp)

T
(m̄i − p̄p)

|mi − pp|
.

The path length correlation is therefore:

〈δ(i, p)δ(j, p)〉 =
1

|mi − pp| |mj − pp|
. . .

(mi − pp)
T (〈

m̄im̄
T
j

〉
+
〈
p̄pp̄

T
p

〉)
(mj − pp) ,

where we assume in the final line that the source and sen-
sor deviations are independent. If, in addition, the position
deviations are isotropic, we can write

〈
m̄m̄T

〉
= σ2

mI and〈
p̄p̄T

〉
= σ2

pI which results in 〈δ(i, p)δ(j, p)〉 = σ2
m + σ2

p.
For solving the general case, we note that the change in

path length causes a change in the propagation path time as in
(5) which is given by:

〈tiptjp〉S =
1

c2
〈δ(i, p)δ(i, p)〉 . (7)

3.2. Channel deviation

The deviation in sound propagation speed is a function of po-
sition and can be modelled as follows:

1

c(x)
=

1

c0
+ g(x),

where the quantity 1
c0

is the mean inverse velocity (note that
c0 will not in general equal the mean velocity) and the devia-
tion from this value, g(x), is zero mean.



The total path delay from x = a to x = b is given by:

q (a,b) =
|b− a|
c0

+ |b− a|
ˆ 1

t=0

g (a + (b− a) t) dt. (8)

We assume that g(x) is zero-mean, spatially stationary
and isotropic and that it follows a 3-dimensional spatial Gaus-
sian distribution with covariance

〈g(x)g(y)〉 = κ2 exp(−|x− y|2

2σ2
)

that is characterised by the two parameters κ2 = 〈g(x)g(x)〉
and σ2 which define its variance and spatial extent respec-
tively.

If we consider two paths starting from the same point
(which, without loss of generality, we can take to be the ori-
gin), it is possible to express their covariance as a single line
integral:〈(
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)∗〉
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where N(x;µ, σ2) represents a Gaussian Probability Density
Function (PDF) and Φ(x) is the cumulative Gaussian distri-
bution. The detailed derivation of (9) is straightforward but
too length to include in this paper.

The covariance between the elements of T representing
the delays from source p to sensors i and j is therefore

〈tiptjp〉C =

〈(
(q(0,mi − pp)− |mi − pp|

c0

)
(10)(

(q(0,mj − pp)− |mj − pp|
c0

)∗〉
,

where mi is the position vector of sensor i and pp source p.

4. SIMULATIONS

Applying (6) to a distributed beamformer shows how the
weights are changed when we consider the random devia-
tions.

4.1. Four Element Array

We consider the distributed beamformer consisting of four
sensors, as illustrated in Fig. 1. A single source is at po-
sition (0.5 m 0.5 m). Sensor M1 is placed at a distance of
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Fig. 1. Sensor and source locations within a room

5 m above the source. Sensors M2, M3 and M4, are placed,
perpendicular to M1, approximately along the same path, at
distances of 0.4 m, 0.5 m and 0.6 m from the y-axis respec-
tively. Based on experimental data we have used σ = 0.2
and κ2 = 1.7 × 10−8 in the simulations. The corresponding
correlations from (9) are given by

〈tiptjp〉C = 5.15× 10−8


1 0.041 0.041 0.043

0.041 1 0.981 0.924
0.041 0.981 1 0.981
0.043 0.924 0.981 1

 .
(11)

The paths from the source to sensors M2, M3 and M4 ap-
proximately coincide and we see from the above correlation
matrix that their delays are strongly correlated. In contrast,
the path from the source to M1 does not overlap the paths to
the other sensors and we see from the low off-diagonal values
in the first row and column that the delays are largely uncor-
related. Fig. 2 shows the correlation of x3 and xj in the ab-
sence of noise, a3,j , as a function of frequency, according to
(5). The bottom line represents sensor M1, its correlation de-
creases with frequency faster than that of M2 and M4, which
are represented by the middle lines.

4.2. General Case

Utilising the change in correlation we can design beamformer
weights that are robust to these channel deviations in a given
array geometry.

To illustrate these effects, we compare two alternative
designs of the maximal Signal-to-Noise Ratio (SNR) beam-
former [22, 23]. The optimal weights are the entries of the
eigenvector corresponding to the maximal eigenvalue, λmax,
of the matrix B:

B =
〈
vvH

〉−1 〈
DSDH

〉
Bw = λmaxw, (12)
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Fig. 2. Correlation between sensor signals x3 and xj in the
absence of noise, a3,j .

First, the original weights, when the propagation coeffi-
cients are taken from the conventional deterministic model,

D = D, (13)

and second, the proposed weights, when we include the ran-
dom deviations matrix from (3):

D = D� exp(jωkT). (14)

The source power is assumed constant over frequency corre-
sponding to 0 dB at a distance of 1 m. We test each beam-
formers in the presence of −10 dB of Gaussian sensor noise
and −10 dB of diffuse noise at the sensor. The diffuse noise
correlation used in the simulations is given as follows [24,25]:

〈vdv
∗
d〉(i,j) = φd

sin
(
ωk

c |mi −mj |
)

ωk

c |mi −mj |
,

where |mi −mj | is the absolute distance between sensors i
and j and φd is the expected power of the diffuse field.

To compare the two approaches we compute the SNR of
each beamformer:

SNR(k) =
wH

〈
D
〈
ssH

〉
DH

〉
w

wH (〈vvH〉) w
,

where D = D� exp(jωkT). Fig. 3 shows the improvement
in SNR comparing (13) and (14) across 300 random array ge-
ometries, with one source, for different numbers of sensors.
The mean gain of the robust beamformer weights against the
conventional weights increases with frequency. The more
sensors present, the more beneficial the robust weights. As
frequency increases, the expected channel deviation errors
grow. Thus the performance of the conventional method, (13),
starts to degrade. However the robust weights design, (14),
still performs well, thus the SNR increases with frequency.
Also the robust beamformer never degrades performance.

Fig. 4 shows that if we include errors in all source and sen-
sor positions, using σm = 0.05 and σp = 0.05, we see further
gains in the performance over the conventional beamformer,
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Fig. 3. The mean SNR gain of the robust beamformer, includ-
ing channel deviations, compared to the conventional beam-
former against frequency, for different numbers of sensors.
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Fig. 4. The mean SNR gain of the robust beamformer, in-
cluding channel deviations and position errors, compared to
the conventional beamformer against frequency, for different
numbers of sensors.

particularly at lower frequencies (< 2 kHz). The position er-
rors cause an additional phase difference that increases with
frequency. The performance of the proposed robust weights
are not affected as much. Thus the SNR gains are further im-
proved with frequency.

5. CONCLUSIONS

In this paper we have presented a model for the propagation
delay variability that affects the signals received by an acous-
tic array as a result of fluctuations in sound speed and un-
certainties in the locations of sources and sensors. We have
shown how this model can be used to derive an explicit for-
mula for the correlation matrix of the propagation delays from
an arbitrary source position to the elements of a sensor array.
By incorporating this into the conventional SNR beamformer
design procedure, we have demonstrated that it always results
in performance improvements especially at high frequencies
where the resultant phase uncertainties are greatest.
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