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ABSTRACT

In this paper we propose the combination of the recursive

least squares (RLS) and the least angle regression (LAR) al-

gorithms for nonlinear system identification. In the applica-

tion of interest, the model possesses a large number of coeffi-

cients, of which only few are different from zero. We use the

LAR algorithm together with a geometrical stopping criterion

to establish the number and position of the coefficients to be

estimated by the RLS algorithm. The output error is used

for indicating model inadequacy and therefore triggering the

LAR algorithm. The proposed scheme is capable of model-

ing intrinsically sparse systems with better accuracy than the

RLS algorithm alone, and lower energy consumption.

Index Terms— Nonlinear systems, Recursive Least

Squares, Least Angle Regression, Volterra

1. INTRODUCTION

Increasing demand for systems capable of performing well

with minimum power consumption has pushed the devel-

opment of signal processing algorithms that exploit system

sparsity. The Least Angle Regression (LAR) algorithm is a

greedy stepwise algorithm that models heuristically sparse

systems [1]. The algorithm has been applied successfully in

several applications, as in [2–7]. Given a set of data, at each

iteration the LAR algorithm adds a new non-zero coefficient

to its active set, thus offering solutions ranging iteratively

from highly sparse to completely dense [8]. Among other

characteristics, the LAR algorithm provides a complete reg-

ularization path [1], which, if not stopped, leads to the LS

solution; stopping this path at a certain point is the focus of

this work.

In [6, 7], the LAR algorithm was used in tandem with

a Volterra filter for the identification of nonlinear systems.

Based on an ingenious technique for determining the num-

ber of nonzero coefficients [9], the algorithm was able to pro-

vide an estimator using only a subset of coefficients, which
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were supposedly the most important ones. However, the LAR

algorithm works with a batch of data and cannot update re-

cursively its coefficients as more data is gathered. This lim-

itation hinders its utilization in real-time applications, for it

makes the algorithm prohibitively complex for large amounts

of data. Overcoming the limitations imposed by the offline

characteristics of the LAR algorithm, yet retaining its abil-

ity to indicate which coefficients matter most, would be most

valuable for the case of sparse systems with a large number

of coefficients.

We propose herein the use of the recursive least squares

(RLS) algorithm for estimating the coefficients indicated by

the LAR algorithm with a geometrical stopping criterion

(which is referred to as GLAR). Output-error monitoring in-

dicates model inadequacy, in which case the LAR algorithm

together with the geometrical stopping criterion provides the

information of the coefficients that need to be estimated.

Although not changing peak complexity, we show that the

proposed scheme offers a reduced time-averaged complexity,

which could lead, in practical implementations, to an overall

energy reduction.

Previous works related to sparse system identification

(though not using the LAR algorithm) include [10–12]. In

both articles, the RLS algorithm is applied with a model se-

lection criterion, such as AIC [13] and BIC [14], to identify

sparse systems. These selection criteria also offer the number

of nonzero coefficients, but requires testing all orders prior to

determining the desired value.

In [10] a convenient maximum number of nonzero co-

efficients is also needed for an improved performance. The

LAR algorithm with a geometrical stopping criterion as seen

herein is able to provide a number of nonzero coefficients

with neither the need of estimating all coefficients nor a pre-

established threshold.

The rest of this paper is organized as follows: Section 2

quickly reviews the LAR algorithm. The combination of LAR

and RLS algorithms for situational awareness is presented in

Section 3 and its application to nonlinear system identification

is shown in Section 4. Conclusions are drawn in Section 5.



2. THE LAR ALGORITHM WITH THE

GEOMETRICAL STOPPING CRITERION

The LAR algorithm was introduced in 2004 by Efron et al. [1]

and has been extensively studied in the past ten years (e.g.,

[8, 15–20]). We will focus our discussion of the algorithm

on the geometrical stopping criterion [9] for determining how

many and which coefficients need to be estimated by the LAR

algorithm.

The input data vector (J × 1) is defined as (see Fig. 1.a)

x(k) = [x1(k) · · · xj(k) · · · xJ(k)]
T
, (1)

where k is the time index, k = 1, · · · ,K, and j is the chan-

nel index, j = 1, · · · ,J . Gathering all input samples from

k = 1 to k = K, the (K × J) input matrix is defined as

X = [x(1) x(2) · · · x(K)]
T
. However, for the purposes

of describing the LAR algorithm, an alternative representa-

tion may be preferable (see Fig. 1.b):

X = [x1 · · · xj · · · xJ ] , (2)

where xj = [xj(1) · · · xj(k) · · · xj(K)]T carries the data

of the jth channel, therefore presented to the jth coefficient,

for all time instants, k = 1, . . . , K.
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Fig. 1. (a) Block diagram for an adaptive filter operating re-

cursively in time, k, and (b) block diagram for an algorithm

operating with a batch of data.

Given a batch of data available in matrix X, each iteration

of the LAR algorithm seeks a new channel to be activated.

Therefore, we might say that the nth iteration (in the LAR

algorithm) is not related to time index k, but to the number of

nonzero coefficients selected so far.

Let en be the (K×1) prediction error vector after n chan-

nels have been activated, i.e., at the nth iteration. We define

the (J×1) correlation vector cn between the input matrix and

the prediction error vector as

cn = X
T
en = [x(1) · · ·x(K)]






en(1)
...

en(K)




 . (3)

In the equation above, the jth element of vector cn, cj,n,

corresponds to an estimate of the correlation between the er-

ror (at iteration n) and the input signal in the jth channel.

We assume that the data for each channel has been nor-

malized for zero mean and unitary length [1]. The jth corre-

lation value in (3) can be rewritten as

cj,n = x
T
jen = ‖xj‖

︸︷︷︸

=1

‖en‖ cos θj,n (4)

such that θj,n = arccos
x

T
jen

‖en‖
, where θj,n is the angle be-

tween the jth coefficient data vector and the error vector at

iteration n.

In the last iteration (n = J), the LAR algorithm yields

the LS solution [1]. Therefore, as stated by the orthogonality

principle, θj,J = 90o, j = 1, · · · ,J .

Let An be the active set, i.e., the set of n indexes corre-

sponding to channels which have been activated. The inactive

set, Ān, is its complementary set and contains the indexes of

coefficients which have been kept equal to zero. According

to the LAR algorithm, the absolute values of the correlation

coefficients for all channels in the active set are equal. Let

this value be Cmax,n, i.e.

|cj,n|

{

= Cmax,n, j ∈ An

< Cmax,n, j ∈ Ān

(5)

which can be simplified to cj,n < Cmax,n when j ∈ Ān.

For the coefficients in the active set, j ∈ An, the angle

θj,n is given by

θj,n =







arccos
−Cmax,n

‖en‖
, cj,n < 0

arccos
Cmax,n

‖en‖
, cj,n > 0.

(6)

As cj,n < Cmax,n, j ∈ Ān, the angles for the coefficients

in the inactive set are related to the coefficients in the active

set as

arccos
cj,n

‖en‖
> arccos

Cmax,n

‖en‖
, (7)

which yields

∣
∣
∣
∣
90o − arccos

cj,n

‖en‖

∣
∣
∣
∣
< 90o − arccos

Cmax,n

‖en‖
, (8)

as illustrated in Fig. 2, from where it is possible to conclude
that

∆θn = max(θn)−min(θn) = 2

(

90o − arccos
Cmax,n

‖en‖

)

, (9)

where θn = [θ1,n · · · θj,n · · · θJ,n].
In [9], a criterion using vector θn was proposed to stop

the LAR algorithm when ∆θn reaches a minimum threshold.
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Fig. 2. Active channels (j ∈ An) yield the maximum angle,

θmax,n, and the minimum angle, θmin,n. Vectors in red illus-

trate angles corresponding to channels in the inactive set.

In case of limited amount of data, we propose the improved

threshold

∆θn ≤ µσθ1
, (10)

where 0 ≤ µ ≤ 1 and σθ1
is the standard deviation of the

angles at the first step. In theory, the value of µ could be set

to µ > 1, but practical results show that too few channels are

active for µ > 1, resulting in inaccurate coefficient vectors.

When the condition in (10) is satisfied, the LAR algorithm

is interrupted and the number of active channels (nonzero co-

efficients) n = N is determined.

3. THE PROPOSED SCHEME

To allow an efficient use of the RLS algorithm to identify a

high order sparse system, we propose the following scheme

based on a situational awareness provided by the GLAR al-

gorithm.

Since the LAR algorithm is not adaptive and must be used

with a fixed amount of data, we have used data windows of

size L = 5J ; we have observed that with this amount of data

the MSE resulted by the LAR algorithm is close to the mini-

mum MSE imposed by the observation noise.

The GLAR algorithm provides the necessary information

(number and positions of nonzero coefficients) to the RLS

algorithm. With privileged information, the RLS algorithm

runs with a reduced complexity at the expense of occasional

peaks in computational complexity required by the LAR al-

gorithm when assessing the system.

In order to be robust in face of possible system non-

stationarity, a trigger calls the LAR routine. This trigger is

implemented via monitoring the estimation error: a variable

τ is increased under certain conditions, as shown in Algo-

rithm 1. We use counter τ as a trigger finger control, which is

increased whenever |e(k)| > σ̂e. By τ = J , it is unlikely that

J outliers occurred, and τ is increased without checking if

|e(k)| > σ̂e. When the minimum amount of data L = 5J , is

gathered, τ = 0.5L triggers the situational awareness routine.

The proposed scheme is detailed in Algorithm 1. The

standard deviation σ̂e of the a priori error is estimated con-

tinuously with a moving average. Due to the lack of space,

we did not detail algorithms GLAR [1,9] and RLS [21]. Also

refer to [1,9] for important information on data normalization

for the LAR algorithm.

Algorithm 1 – The GLAR-RLS algorithm

1: L← 5J
2: for k = 1,2,3, · · · do

3: if k < L then

4: run the RLS (J coefficients)

5: else

6: if k = L or τ = 0.5L then

7: run the GLAR, obtain N ≤ J

8: τ ← 0
9: else

10: run the RLS (N coefficients)

11: if (τ < J and |e(k)| > σ̂e) or (τ ≥ J) then

12: τ ← τ + 1
13: end if

14: end if

15: end if

16: update σ̂e

17: end for

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed algo-

rithm in a sparse system identification, we used the setup de-

picted in Fig. 3.
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Fig. 3. System setup used to identify the nonlinear system.

Block named “PROPOSED SCHEME” may be the RLS or

the GLAR algorithm according to Algorithm 1.

The nonlinear system is represented by an LNL model:

two linear digital filters (L1 and L2) and one memoryless non-

linearity (N ). The reference signal d(k) comprises the output

of the nonlinear system plus zero mean white noise with vari-

ance σ2
n = 10−6. Two scenarios are simulated, with a fixed

coefficient vector that changes abruptly in k1 = 4,000 and in

k2 = 7,000.

Defining x(k) = [x(k) x(k − 1) x(k − 2)]
T

and z(k) =

[z(k) z(k − 1) z(k − 2)]
T
, the LNL model is described as

follows. In the first scenario, the system input x(k) is mod-
eled by a white noise with variance σ2

x = 1 and the LNL



model is

r(k) =







[0.5 1 0.5]x(k), k < k1
[0.5 0 0.5]x(k), k1 ≤ k < k2
[0.5 1 0.5]x(k), k ≥ k2

z(k) = r(k)− r
3(k)

d(k) =







[0.1 − 0.5 0.1] z(k) + n(k), k < k1
[0.1 − 0.5 0] z(k) + n(k), k1 ≤ k < k2
[0.1 − 0.5 0.1] z(k) + n(k), k ≥ k2.

In the second scenario, the system input x(k) is modeled
by a white noise with variance σ2

x = 10−2 and the LNL model
is

r(k) = [0.5 1 0.5]x(k)

z(k) =







tangh(r(k)), k < k1
0.1r(k)− 0.01r3(k), k1 ≤ k < k2
r(k)− r3(k), k ≥ k2

d(k) = [0.1 − 0.5 0.1] z(k) + n(k).

In the first scenario for k1 ≤ k < k2, the simulated sys-

tem has N = 12. In the second scenario for k < k1, N is

unknown, since the nonlinearity is given by a hyperbolic tan-

gent. In both scenarios, apart from those periods just pointed

out, the simulated system has N = 27. Nevertheless, the

third-order Volterra filter, with memory equal to four, yields

55 coefficients in the kernel, not counting the DC component.

To compare the results of the GLAR-RLS algorithm, the

conventional RLS algorithm with a forgetting factor of λ =
0.99 is also employed.

The results of a single run are shown in Figs. 4 and 5.

Fig. 4 shows the value of N at each iteration for different val-

ues of parameter µ; the real number of nonzero coefficients

are indicated in a dashed line. Smaller values of µ yield more

coefficients to be estimated. When µ tends to zero, we ob-

tain the response of the RLS algorithm with N = J nonzero

coefficients. We can identify in this figure when the GLAR

algorithm is called by observing the discontinuities; however,

in Fig. 4(b) for µ = 0.5 there is no discontinuity near k1, al-

though the GLAR algorithm had been called (the number of

estimated coefficients was the same).

As for computational complexity, an overview of this ex-

periment can be seen in Fig. 5 in terms of number of multipli-

cations per time instant k. Every time the GLAR algorithm is

run, a peak in the computational complexity appears, as seen

in Fig. 5 on the left graphic. However, if the scheme is eval-

uated dynamically and the computational load is integrated

over time, due to the reduced number of coefficients used by

the LAR algorithm, the GLAR-RLS scheme turns out to be

more economic, always saving energy in the long run. This is

observed in Fig. 5 on the right graphic. Results in Fig. 5 are

related to the first scenario; the second scenario has a similar

result, omitted here due the lack of space.

The average of the MSE over 100 runs is presented in

Fig. 6 for the GLAR-RLS algorithm with µ = 0.5 and µ =
0.3 for the first and second scenarios, respectively, as well as
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Fig. 4. Coefficients estimated by the proposed algorithm with

different values of µ. The real number of nonzero coefficients

is given by the dashed line. k1 = 4000 and k2 = 7000.
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Fig. 5. Computational complexity: instantaneous number of

multiplications (left) and summed up over time (right).

for the full (J coefficients) RLS algorithm. Parameter µ is

chosen based on the amount of data available (windows of

L samples) and in the relation of zero/nonzero coefficients;

the resulting N impacts directly on computational complex-

ity. The choice of µ is therefore critical to having amenable

performance of the proposed GLAR-RLS scheme in terms of

long run efficiency. During the time period that τ is being

increased, the MSE result of the GLAR-RLS algorithm is de-

teriorated when compared to the RLS algorithm, but once the

GLAR algorithm is run, the MSE result is enhanced when

compared with the full RLS algorithm, since the correct co-

efficients (or most of them) are set to zero and the recursion

in time is over N < J nonzero coefficients. The convergence

time of the GLAR-RLS algorithm is shorter than the RLS al-

gorithm after abrupt changes of the plant to be identified.

5. CONCLUSION

In this work, situational awareness based on the LAR al-

gorithm using a geometrical stopping criterion was used to

assist the RLS algorithm in identifying sparse systems: after

the GLAR algorithm provides privileged information (num-

ber and position of nonzero coefficients), the RLS algorithm
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Fig. 6. The resulted MSE, calculated with a priori error, for

the GLAR-RLS algorithm and for the conventional RLS al-

gorithm (using J coefficients).

runs with reduced computational complexity. The proposed

scheme, called the GLAR-RLS algorithm, cascade with a

Volterra filter, was used to identify two nonlinear systems.

The performance of the GLAR-RLS algorithm was com-

pared with that of the RLS algorithm. In both simulated

scenarios, where the system changed abruptly, the GLAR-

RLS algorithm presented more accurate estimation, reduced

time-averaged computational complexity, and reduced energy

consumption over long periods of continuous operation. The

proposed scheme also works well in stationary environments,

setting the the nonzero coefficients to the RLS algorithm

REFERENCES

[1] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,

“Least Angle Regression,” in Annals of Statistics, Stan-

ford University, 2004, vol. 32, pp. 407 – 409.

[2] L. Xi, D. Hang, and W. Mingwen, “Two-stage feature

selection method for text classification,” in Interna-

tional Conference on Multimedia Information Network-

ing and Security, Nov. 2009, vol. 1, pp. 234 – 238.

[3] S. Sathiya Keerthi, “Generalized LARS as an effective

feature selection tool for text classification with SVMs,”

in 22nd International Conference on Machine Learn-

ing, 2005, pp. 417 – 424.

[4] X. Li, “Finding deterministic solution from underde-

termined equation: large-scale performance modeling

by least angle regression,” in 46th ACM/IEEE Design

Automation Conference, July 2009, pp. 364 – 369.

[5] C. Xiao, “Two-dimensional sparse principal compo-

nent analysis for face recognition,” in 2nd International

Conference on Future Computer and Communication,

May 2010, vol. 2, pp. 561 – 565.

[6] C. Valdman, M. L. R. de Campos, and J. A. Apolinário

Jr., “Nonlinear system identification with LAR,” in In-

ternational Workshop on Telecomunications. Instituto

Nacional de Telecomunicações, May 2011, pp. 195–

200.

[7] C. Valdman, M. L. R. de Campos, and J. A. Apolinário

Jr., “Nonlinear system identification with LAR,” Re-

vista Telecomunicações, vol. 13, no. 02, pp. 12–21,

Dec. 2011.

[8] D. L. Donoho and Y. Tsaig, “Fast solution of l1-

norm minimization problems when the solution may be

sparse,” IEEE Transactions on Information Theory, vol.

54, no. 11, pp. 4789–4812, Nov. 2008.

[9] C. Valdman, M. L. R. de Campos, and J. A. Apolinário

Jr., “A geometrical stopping criterion for the LAR algo-

rithm,” in 20th European Signal Processing Conference

(EUSIPCO), Aug. 2012, pp. 2104–2108.

[10] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş,
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