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ABSTRACT
We present a new approach for video shot detection and intro-
duce multi temporal distance images (MTDIs), formed by chi-
square based similarity measures that are calculated pairwise
within a floating window of video frames. By using MTDI-
based boundary detectors, various cuts and transitions in var-
ious shapes (dissolves, overlayed effects, fades, and others)
can be determined. The algorithm has been developed within
the special context of soccer game TV broadcasts, where a
particular interest in long view shots is intrinsic. With a cor-
rect shot detection rate in camera 1 shots of 98.2% within our
representative test data set, our system outperforms compet-
ing state-of-the-art systems.

Index Terms— soccer video analysis, video indexing,
multi temporal distance image (MTDI), video segmentation,
video shot boundary detection

1. INTRODUCTION

A video is usually a combination of shots from different cam-
eras. A shot itself is defined as a continuous and uninter-
rupted image sequence. Shot boundaries are formed by cuts
or transitions (in the shape of dissolves, fades, wipes, effects,
etc.). Fig. 1 shows examples. Camera flashes may also occur
during shots and must be distinguished from shot boundaries.
The challenge of boundary detection, and thus shot recogni-
tion, is the subject of this paper.

Good overviews of shot boundary detection are found in
[1] and the earlier [2]. Both explain that transition detec-
tion is a more complex challenge than cut detection due to
its higher temporal dependence and possible motion interfer-
ence. Histogram-based approaches are discussed in [3, 4],
while [5] incorporates statistics of gray value and edge-based
differences. Other authors make use of entropy and SURF
descriptors, e.g. [6], or spatio-temporal images, e.g. [7].

Systems developed for soccer applications include [8, 9].
Such approaches make use of grass detectors for general shot
change detection and are significantly more context depen-
dent than others.

By contrast, our paper tackles the robust detection of a
relevant subset of shot boundaries, namely those of the main
camera, camera 1. This camera records long views of the
game (cf. Fig. 1 (c) and (f)) and thus provides images that are
useful for a variety of analyses, e.g. [10]. Unlike news broad-
casts or movies, camera 1 shots contain images with similar
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Fig. 1. Two exemplary transitions. (a)-(c) effect overlay. (d)-
(f) dissolve transition. Frames from camera 1 (long view) are
shown in images (c) and (f).

content (i.c. histograms) even during fast camera motions.
Because of this as well as special effects at shot boundaries
(see Fig. 1), finding these shots is a different problem than it
is for general videos.

Our approach is inspired by [3] and [7]. We create feature
matrices from histograms, as [3] suggests, but we compose
them in a different manner, and in contrast to [7], no direct
local dependency is incorporated or necessary. The result is
a robust and fast system with low sensitivity to fast camera
motions that models cuts and transitions (as well as effects)
into shot boundaries.

2. SYSTEM OVERVIEW

Our approach consists of a new frame-wise shot change de-
tection. After a color conversion, image-describing features
allow us to calculate distances between time-adjacent frames.
Based on these distances, frames are classified into in-shot,
cut-in, cut-out and transition. Then, a shot merger transforms
the video timeline into shot intervals based on the frame
classes. In addition to its quantitative assumptions (see Table
1), our model also incorporates three qualitative assump-
tions: the main action takes place in the center of the screen,
the director will not set a cut or a fade effect between two
non-differentiable frames, and the soccer video is full screen
without picture-in-picture methods.



Variable Default Meaning
Ts 2s Minimum shot duration
Tt 1.5s Maximum transition duration

Table 1. Quantitative model assumptions

3. SHOT DETECTION

The images of the input video (with constant size within the
video) are first converted into an appropriate colorspace. We
use CIELAB color space because the distances approximate
human perception and the resulting histogram matrices (M i,
introduced in Section 3.1) are populated primarily by zeros
in our scenarios. The usage of sparse matrices improves the
computational cost.

3.1. Feature generation

Every image is divided into a constant decomposition of
subimages, convex combined with weights w•. To simplify
calculation, we relax the problem to rectangular subimages
of equal size. The area not covered due to residuals can be
cropped. Usually the image size is much higher than the
number of rectangles, so the residuals carry no weight and
can be left out. As an example, our default decomposition is
shown in Fig. 2. The weights are set a priori according to
an expected amount of regional importance. This models the
first qualitative assumption.
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Fig. 2. Decomposition of an image into rectangles with col-
umn indices of the feature matrix M i and default weights w•
in parentheses.

Let us choose an arbitrary video image with frame index
i (image #i). For each cell (or rectangle) a normalized 3D
histogram on the underlying image data is calculated. By re-
ducing the image to three bits for each channel, (23)3 = 512
bins are used. Features can now be inserted into 512-tuples
containing the histogram information. One 512-tuple for ev-
ery cell is created, in the case of Fig. 2, a total of 16 tuples
with 512 entries are created. They are inserted column-wise
into the matrix M i, the feature matrix for image #i. The his-
tograms are normalized separately such that the sum of the
(512 ∗ 16) matrix entries is equal to the number of columns
(16).

3.2. Distance calculation

We use the χ2-measure (see [11]) to calculate distances be-
tween images. This has two advantages: we can directly ob-
tain a symmetric distance and the value is restricted to the
interval [0, 1]. Of course, the measure is not a metric because
the coincidence and subadditivity (triangle inequality) axioms
are unfulfilled. Nevertheless, we call it a distance. Adapting
for weighted feature sets (in the feature matrices M i and M j

of images #i and #j) with weights w• results in:

χ2(M i,M j ;w•) :=
1

2

∑
q

wq

∑
r

(
M i

r,q −M j
r,q

)2
M i

r,q +M j
r,q

. (1)

Addends with value 0
0 are omitted. It is easy to show that

χ2(M i,M j ;w•) is also symmetric and restricted to [0, 1] be-
cause the histograms are normalized and the weights w• sum
to one. This distance enables a simple cut detection:

χ2(M i,M i+1;w•)

{
≥ threshold, cut or flash at i,
< threshold, i is within shot.

(2)
The Recognition And Vision Library (RAVL) [12] uses

a related system for shot boundary detection. Although cut
detection is viable with such an approach, transitions need a
more time-dependent approach.

3.3. Multi temporal distance images

We now consider distances between a broader range of im-
ages. Let D := (di,j) with di,j := χ2(M i,M j ;w•) be the
matrix of distances. This matrix is real and symmetric, its
elements are nonnegative, and all diagonal elements are zero.

This matrix becomes very large (the square of the number
of video frames), however, data outside a diagonal neighbor-
hood are not of interest. To reduce memory and calculation
cost, an online approach with smaller matrices is introduced.
The necessary neighborhood size is z := b 12Tt ∗ fpsc, where
fps is the number of frames per second.

D̂(i) :=


di−z,i−2z · · · di−z,i−z · · · di−z,i

...
...

...
di,i−z · · · di,i · · · di,i+z

...
...

...
di+z,i · · · di+z,i+z · · · di+z,i+2z


(3)

We call these matrices multi temporal distance images
(MTDIs), since every entry can be interpreted as an image
gray value. The center, with coordinates (z + 1, z + 1), is
its reference point (with value 0). To obtain D̂(i + 1), z
distance calculations (for di+z,i+z+1, . . . , di+z,i+2z) must be
executed if D̂(i) is known.
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Fig. 3. MTDIs (shown on a grid) for cut-in (left) and cut-
out (right) for two shots with maximal inter shot distance and
minimal intra shot distance. The reference point is indicated
by an arrow.

3.4. Cut detection

Cuts are divided into two different events: the cut-in is the last
frame of a shot before a cut occurs and the cut-out is the first
frame after a cut. As shown in Fig. 3, we use stair shapes to
build a detector. This allows for a more robust classification
than could be achieved using a frame-to-frame distance. The
upper stair shape for cut-in detection includes every MTDI
entry d̂r,q with r ≤ z + 1 and q > 2z + 1− r with reference
point at coordinates (z+1, z+1). The lower stairs as well as
the cut-out detection are redundant because the values within
the lower stairs all together appear in the upper stairs. A frame
is classified positive if all entries from the upper stairs (Fig.
3, left) are element-wise above a selected threshold value, de-
noted Bc.

3.5. Transition detection

A more complicated scenario is the detection of transitions:
the shot change can be embedded into an effect and the tran-
sition length is unknown. An example of an ideal transition
(transition time is equal to Tt, inter shot distances are maxi-
mal, and there are no intra shot distances) and a real world ex-
ample (a shorter transition length, with interference) is shown
in Fig. 4. To overcome the task of detecting transition centers,
the results of four individual MTDI classifiers are merged.

Shape model. Transitions form noticeable shapes within
MTDIs. If the duration is reduced to one intermediate frame
between cut-in and cut-out, the resulting structure (in the ideal
case) is similar to that of the cut (see Fig. 3). The intermediate
frame appears as a constant horizontal line between the two
stair shapes. The resulting shape is used as a template MTDI
T = (ti,j) with respect to equal neighborhood size z between
template and video image. The construction of T is analogous
to the stair construction within Section 3.4 except that now
every covered entry is set to one and uncovered entries are
set to zero. Template compliance can be measured using a
threshold value Bs (like cut threshold Bc) by

p1(D̂(i)) :=
#{(r, q) | d̂r,q ∗ tr,q ≥ Bs}

#{(r, q) | tr,q = 1}
. (4)

Sum model. Transitions longer than one frame lead to
high values of p1 at frames within a neighborhood of the ac-
tual transition center. This issue is addressed by two models,
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Fig. 4. MTDIs for transitions within an ideal scenario (left)
and the real world scenario from Fig. 1 (d)-(f) (right). The
gray values on the left are scaled by a factor of two for better
visibility. The MTDIs are vertically extended to offer better
insight.

the sum model and the weight model. The former uses the fact
that the distance sum in every MTDI line should monotoni-
cally decrease in both temporal directions from the transition
center.

p2(D̂(i)) :=
1

2z
∗(

#
{
r
∣∣∣ 1 ≤ r ≤ z,∑q d̂r,q ≤

∑
q d̂r+1,q

}
+

#
{
r
∣∣∣ z + 1 ≤ r ≤ 2z,

∑
q d̂r,q ≥

∑
q d̂r+1,q

})
(5)

Weight model. The sum model penalizes jumps in the
sequence of line sums only once. The weight model uses
the fact that the transition center frame is the MTDI row
with highest line sum within its neighborhood. All line sums∑

q d̂r,q with r 6= z+1 are sorted by increasing value. The in-
dex of the first sum that is bigger than the line sum

∑
q d̂z+1,q

is denoted as j. If no list item fulfills this requirement, j is
set to 2z + 1.

p3(D̂(i)) :=

(
j − 1

2z

)4

(6)

The exponent of four is used to promote the values near the
end of the list. Frames with high p3 values show the most
dynamic actions in the underlying video sequences.

Differential model. This model processes the MTDI hor-
izontal line at the reference point only. The line is numerically
differentiated using the central difference quotient, resulting
in a list with 2z−1 entries. All elements are replaced by their
absolute values. The last z − 1 entries are considered to be
function samples, measured equidistant from 0 to 1. A swing
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Fig. 5. Transition center probabilities within a test video
(25fps). A transition (around frame #6427) causing a signal
peak.

function f(x) = a
2 [tanh(π(1− 2bx)) + 1] with 0 < a ≤ 1

and b ≥ 1 is now fitted to the sampled values, resulting in op-
timal parameters ar and br. The same procedure is repeated
for the left side, the first z− 1 entries, and the swing function
f(−x+ 1), giving parameters al and bl.

So far we have proposed a structure that is able to model
the past and future distances from the reference point with
four variables. The symmetry of frame distances at transi-
tion centers is the main feature we take advantage of. We
now swap ar and br with al and bl and calculate the differ-
ences {v1, . . . , v2(z−1)} from each sample point to f(x) and,
respectively, f(−x+ 1). The fourth detector

p4(D̂(i)) := 1− 1

2(z − 1)

∑
r

|vr|0.5 (7)

therefore models the shape of the transition center.
Composing. The presented transition detectors are finally

combined together to form a robust detection system.

P (transition center in frame no. i) :=
4∏

r=1

pr(D̂(i)) (8)

We call its output transition center probability. The
threshold Bt now allows to decide if a frame can be clas-
sified as transition center. Fig. 5 shows an example.

3.6. Shot merger

Until this point, only frames have been classified. To re-
trieve shot intervals, all detected cuts and transition points
(frames are associated with timeline points) as well as the start
and end points of the video are considered to be shot bound-
aries. Because transitions are marked at their center points,
half of the maximum transition duration Tt is once added and
once subtracted from the center point timeline position and
the range within is discarded. The remaining ranges and the
resulting boundaries form the final shot intervals. Shots with
a length shorter than Ts are not considered.

4. IMPLEMENTATION AND EVALUATION

Our shot detection system is based on only three thresholds
Bc, Bs and Bt that have to be chosen. An example of the
temporal behavior of the transition probability within a data
set is shown in Fig. 5. Because the selected thresholds are not
prone to interferences, we determined them empirically.

4.1. Evaluation data

We used the videos of five TV soccer matches for both train-
ing and testing our system. To test the ability of the system to
adapt to different scenarios, we applied the model to games
from different leagues, cups and continents. An overview of
our test data is shown in Table 2.

As we are interested in finding long view shots from cam-
era 1, we annotated every boundary from such a shot manu-
ally. If transitions were included, the boundaries were set at
the final frame that showed image data from the correspond-
ing shot only. Shots with a length shorter than three seconds
were not considered.

4.2. Evalutation setup

Beside the MTDI system (with parameters Bc = Bs = 0.2,
Bt = 0.4) we also evaluated two publications important once
for shot detection in general and once specifically for shot
detection in TV soccer videos:

The Fraunhofer Heinrich Hertz Institute’s (HHI) model
[5] is based on pixel, edge and histogram difference statistics.
It consists of separate detectors for hard cuts and the transition
types. The results achieved at the TRECVID conference [1]
showed very good detection performance [5].

Secondly, we implemented the approach from Ekin et al.
[8]. In contrast to the newer HHI concept, this system was
built specifically for soccer shot detection. The thresholds
in this system are trained during a separate learning stage.
Screenshots from camera 1, closeups (100 from each class),
and grass calibration images for every video were manually
selected according to the paper guidelines.

Because Ekin’s approach as well as the available version
of the HHI system do not model transition lengths, we short-
ened every shot by one second at both boundaries. Without
this step, every non cut shot change would result in a false
detection if it concerned the boundary of a camera 1 shot.
An annotated shot is now classified as detected if at least one
shot change is detected within its first 1.5s, at least one shot
change is detected within its last 1.5s, and no shot change is
detected within [start + 1.5s, end − 1.5s]. This relaxation
had no negative effect on the recognition rates of the systems.
The shot merger of the MTDI model automatically shortens a
shot if a transition is detected.

4.3. Results

The MTDI approach detects 98.2% of the camera 1 shots cor-
rectly. Errors are caused by missing shot boundaries between
fades of similar images. No boundaries within camera 1 shots
were detected (interrupted shot rate (ISR), measured against
false detections: 0%).



Match (Video) Length Shots Cam1
(mm:ss) shots

FC Bayern - Arsenal 20:03 107 31
(UEFA Champions League, HD, night)

Burkina Faso - Ghana 55:56 620 123
(Africa cup, many game interruptions)

M’Gladbach - Lazio 51:51 456 100
(Europe League, inserts and ads included)

South Korea - Greece 3:00 43 12
(World Cup 2006, midday sun)

RB Leipzig - SF Lotte 8:13 52 16
(Forth tier of the German league system)

Σ 138:53 1278 282

Table 2. Information about the evaluated soccer games

Both Ekin’s (ISR: 0.40%) and the HHI system (ISR:
0.30%) had difficulties with transition effects. In particular,
the latter method suffers from false shot detections during
rapid camera motions. The results are summarized in Table
3. Our approach shows the highest shot detection quote in
every test video with a 100% score in three videos.

Match (Video) MTDI HHI EKIN
FC Bayern - Arsenal 100.0% 87.1% 67.7%

Burkina Faso - Ghana 98.4% 87.8% 78.9%

M’Gladbach - Lazio 97.0% 87.0% 72.0%

South Korea - Greece 100.0% 100.0% 50.0%

RB Leipzig - SF Lotte 100.0% 93.8% 68.8%

Σ 98.2% 88.3% 73.4%

Table 3. Correctly identified camera 1 shots

4.4. Computational cost

If frame accuracy in shot boundary detection is not necessary,
the system is able to skip frames without degrading perfor-
mance. This results in smaller neighborhood sizes z and less
computational cost. Using a fixed frame rate, the algorithms
are frame-wise O(n) if n is the number of pixels per frame.
This is due to the histogram creation. The distance and detec-
tor calculations are arithmetic operations of a fixed size and
have a complexity of O(1). Implemented in C++ and exe-
cuted on a Intel Core i7-2600k, we achieved a rate of 67.7 fps
with HD data and 122.1 fps with SD data. Frame skipping
at 15 fps, results in an improvement factor of 5.4 on HD50
videos and 9.8 on SD25 videos.

5. CONCLUSION

Our paper reveals that MTDI based shot boundary detectors
show remarkable results, in both computational speed and

correctness. Nearly every camera 1 shot boundary was de-
tected correctly, independently from its type - transition (in-
cluding effects) or cut. The established detector from the
Fraunhofer HHI [5] as well as the soccer specific detector
from Ekin et al. [8] were distanced regarding their detection
performance.

REFERENCES

[1] Alan F Smeaton, Paul Over, and Aiden R Doherty, “Video
shot boundary detection: Seven years of TRECVid activity,”
Computer Vision and Image Understanding, vol. 114, no. 4,
pp. 411–418, 2010.

[2] John S Boreczky and Lawrence A Rowe, “Comparison of
video shot boundary detection techniques,” Journal of Elec-
tronic Imaging, vol. 5, no. 2, pp. 122–128, 1996.

[3] Ali Amiri and Mahmood Fathy, “Video Shot Boundary Detec-
tion Using QR-Decomposition and Gaussian Transition De-
tection,” EURASIP Journal on Advances in Signal Processing,
vol. 2009, no. 1, 2009.

[4] Swati D Bendale and Bijal J Talati, “Analysis of Popular Video
Shot Boundary Detection Techniques in Uncompressed Do-
main,” International Journal of Computer Applications, vol.
60, no. 3, pp. 30–33, 2012.

[5] Christian Petersohn, “Fraunhofer HHI at TRECVID 2004:
Shot boundary detection system,” in TREC Video Retrieval
Evaluation Online Proceedings, TRECVID, 2004.

[6] J. Baber, Nitin Afzulpurkar, M.N. Dailey, and M. Bakhtyar,
“Shot boundary detection from videos using entropy and local
descriptor,” in Digital Signal Processing (DSP), 2011 17th
International Conference on, 2011, pp. 1–6.

[7] Chong-Wah Ngo, Ting-Chuen Pong, and Hong-Jiang Zhang,
“Motion-Based Video Representation for Scene Change De-
tection,” International Journal of Computer Vision, vol. 50,
no. 2, pp. 127–142, 2002.

[8] Ahmet Ekin, A Murat Tekalp, and Rajiv Mehrotra, “Automatic
soccer video analysis and summarization,” Image Processing,
IEEE Transactions on, vol. 12, no. 7, pp. 796–807, 2003.

[9] Shu-Ching Chen, Mei-Ling Shyu, Chengcui Zhang, Lin Luo,
and Min Chen, “Detection of soccer goal shots using joint
multimedia features and classification rules,” MDM/KDD, vol.
3, 2003.

[10] M Alemán-Flores, L Alvarez, L Gomez, P Henriquez, and
L Mazorra, “Camera calibration in sport event scenarios,” Pat-
tern Recognition, 2013.

[11] Ofir Pele and Michael Werman, “The Quadratic-Chi His-
togram Distance Family,” in Computer Vision ECCV 2010,
vol. 6312 of Lecture Notes in Computer Science, pp. 749–762.
Springer Berlin Heidelberg, 2010.

[12] C Galambos, “RAVL: Recognition And Vision Library.,”
http://ravl.sourceforge.net, 2000.


