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ABSTRACT
In this paper we present a privacy-preserving speaker verifica-
tion system using a UBM-GMM technique. Remote speaker
verification services rely on the system having access to the
user’s recordings, or features derived from them, and a model
representing the user’s voice. Preserving privacy in our con-
text means that neither the system observes voice samples or
speech models from the user nor the user observes the univer-
sal model owned by the system. Our approach uses Garbled
Circuits for obtaining an implementation that simultaneously
is secure, has high accuracy and is efficient. To the best of our
knowledge this is the first privacy-preserving speaker verifi-
cation system that accomplishes all these three goals.

Index Terms— Speaker Verification, Gaussian Mixture
Models, Garbled Circuits, Data Privacy

1. INTRODUCTION

Given the rapid increase of storage capability over the Inter-
net, a widespread development of a variety of online services
occurred, ranging from banking to social networks, video or-
ganizers, blogs, online games, etc. All these services have in
common the fact that users must first register with them and
receive a unique user ID and a written password with which
they can authenticate themselves to the system. In many sit-
uations, an attractive alternative is to authenticate users using
their voice, since it is a more natural way of communication.

Voice-based authentication systems, also referred to as
speaker verification systems, however, have significant pri-
vacy concerns. Current systems require access to a person’s
voice, or at least parameterized versions of it. An individual’s
voice not only is a biometric identifier of a person but also car-
ries additional information about a person’s gender, national-
ity, etc. This means that a malicious system, or a hacker who
has compromised the system, could both edit the recordings
to impersonate the user and use the additional information for
further potential abuse, e.g., sell it to third parties. Even if the
user only transmits features extracted from the voice, such
that a recording cannot be synthesized from them, some risks
remain. Ideally, the service should not have access to any
biometric information, though it seems nearly paradoxical to
require the system not to have access to many key voice char-
acteristics that themselves help establish the user’s identity.

Consider the situation where a user wishes to register him-
self with an online service provider using his own voice. A
typical approach to implementing a speaker verification sys-
tem is to consider a Gaussian mixture model (GMM) tech-
nique [1]. Since the user wants to be able to use his voice in-
stead of typing a password, he first needs to obtain a model for
his own voice. In the enrollment phase, the online system can
provide an application with a built-in universal background
model (UBM), to which the user can supply voice samples in
order to obtain an adapted model. The user then sends this
adapted model to the system. Later, during the verification
phase, the user tries to login to his account and sends new
voice recordings (or features derived from them) to the sys-
tem, who then decides on whether or not to authenticate the
user by evaluating these recordings against the user-specific
model and the UBM. As an additional security layer, during
the enrollment phase the user can apply a cryptographic hash
function (e.g. SHA-2 [2]) to his model and send the output
to the system, allowing it to be used as a password during the
verification phase. As mentioned before, in this situation the
user’s identity may be compromised, since he must supply the
system with features and a model representing his own voice.

To counter this issue, in this paper we propose a novel
approach for accomplishing speaker verification in a privacy-
preserving manner in scenarios such as the one described
above. We reformulate the GMM-based technique for speaker
verification by performing all the required operations us-
ing a cryptographic primitive known as the Garbled Circuit
(GC) [3]. In our approach no private information is transmit-
ted, only ciphers corresponding to the bits representing data
values. The ciphers are transmitted using Oblivious Transfer
(OT) [4] and all the operations are performed in the encrypted
domain, so none of the parties involved can learn anything
about the other parties except for the ciphers themselves (but
not what they represent). Using our technique, the privacy
requisites are fulfilled, since the system obtains all the nec-
essary data for performing an informed user authentication
decision but is unable to use it in any other way, due to it
being encrypted.

The remainder of this paper is structured as follows. In
Section 2 we briefly describe the relevant concepts for this
work, namely speaker verification using GMMs and Garbled
Circuits. Section 3 contains some of the previous work on



the privacy-preserving speaker verification task, on which we
build upon. In Sections 4 and 5 we describe our technique
for privacy-preserving speaker verification using Garbled Cir-
cuits and illustrate its performance with some experimental
results, respectively. Finally, we present some conclusions
and directions for future work in Section 6.

2. BACKGROUND

2.1. Speaker Verification using GMMs

Conventional speaker verification systems require users to
provide voice samples to the system during an enrollment
phase. The system then uses these samples to build a model
for the corresponding user. Finally, the user provides fresh
samples to be compared with his model during the verifi-
cation phase. These speaker verification systems normally
perform a likelihood ratio test to confirm the user’s iden-
tity. Each sample x is first parameterized into a sequence of
feature vectors x1, . . . , xT , usually mel-frequency cepstral
coefficient (MFCC) vectors. A large collection of recordings
from non-target speakers is then used to train a universal
background model (UBM), λU , which is a Gaussian mixture
model (GMM) representing the global distribution of speech.
The UBM is adapted to each user’s enrollment recording in
order to obtain user-specific GMMs, λS , through maximum a
posteriori (MAP) adaptation [1]. Performing MAP adaptation
ensures a one-to-one correspondence between the Gaussians
in the UBM and the ones in the user models. The likelihood
of a feature vector xt given by either a UBM or a user-adapted
GMM composed of M Gaussians is computed by:

P (xt|λS/U ) =
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in the mixture. This process is repeated for all feature vectors
in x. Finally, the likelihood ratio is computed and a verifica-
tion decision is made using:

P (x|λS)

P (x|λU )

{
≥ θ accept user,
< θ reject user, (2)

where P (x|λS/U ) is the product of all the P (xt|λS/U ) with
t = 1, . . . , T and θ is a predefined threshold parameter. Since
typical values for P (xt|λS/U ) are usually prone to underflow
issues, their logarithms are normally considered instead.

2.2. Garbled Circuits

Secure Function Evaluation (SFE) [3] refers to the framework
whereby two parties can compute a function on their com-
bined inputs without revealing their individual inputs to one

Fig. 1. Example of a logic circuit and respective truth tables.
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Table 1. Example of garbled truth tables.

another. Several approaches can be considered for performing
SFE. The most popular is to express the function to be evalu-
ated as a garbled Boolean circuit, usually referred to as a Gar-
bled Circuit (GC) [3]. The way GCs work is best explained
using an example. Alice has Boolean inputs a and b, Bob has
Boolean input c. They wish to compute f(a, b, c) = a∨b ∧ c.
The logic circuit for f(a, b, c) and the truth tables for the gates
in it are shown in Figure 1. However, Alice does not want to
disclose a or b to Bob, and Bob does not want to disclose c
to Alice. In order to still be able to compute f(a, b, c), they
must therefore garble the circuit.

Bob starts by generating the logic circuit implementing
f(·), garbling it, and sending it to Alice. To do so he gener-
ates two private keys, one for each bit value, for each input
and intermediate value (a, b, c, r in the example), totaling
eight keys: K0/1

a , K0/1
b , K0/1

c , K0/1
r . For gates generating

intermediate values (r = b ∧ c in our example), he replaces
each output of the truth table with the encryption of the key
corresponding to that output, performed with the keys corre-
sponding to the inputs. For example, for b = 1, c = 0, the
output is r = 1; the corresponding input keys areK1

b ,K0
c and

the encrypted output is EK1
b
(EK0

c
(K1

r )). For the output gates
(f = a ∨ r in our example), he encrypts the output bit itself.
The garbled values for our example are presented in Table 1.

To compute the function, Bob transmits the keys corre-
sponding to his bit choice for his inputs, K?

c , to Alice. Alice
recovers the keys corresponding to the bit choice for her in-
puts, K?

a and K?
b , as well as the truth tables for the circuit

gates from Bob using oblivious transfer (OT) [4]. Because of
the properties of OT, Bob does not learn either the value of
Alice’s bits or the entries of the truth table she actually re-
quires to perform the computations. To evaluate the circuit,
Alice successively evaluates each of the gates in the circuit.
The nature of the computation is such that for each gate, Al-
ice will possess two keys, one for each input. She decrypts



all four encrypted outputs in the truth table for the gate, us-
ing these two keys. The keys will be inappropriate for three
of the four outputs; hence Alice can only correctly decipher
one of the four encrypted values, which in turn will be one of
the keys for the next gate. After repeating this process for all
gates, she finally obtains the output value f . Alice and Bob
never learn each others’ inputs.

For a long time it was believed that GCs were of purely
theoretical interest, but recent advances have made GC much
more efficient and practical to use. These advances include
offline execution of OT, fast decryption of the garbled tables,
efficient evaluation of XOR gates and consequent custom de-
sign of circuits, etc., and have decisively contributed to the
wide-spread popularity of GCs. As a consequence, a huge
variety of software implementations of all the required proto-
cols and encryption systems are available.

3. PREVIOUS WORK

In [5] a privacy-preserving method for speaker verification
using GMM is presented. The personal information from
each party is kept hidden from the other party by perform-
ing all operations using a partially homomorphic encryption
system [6]. In short, the main idea behind these systems is to
allow operations to be performed on encrypted data (cipher-
text) without any knowledge regarding the corresponding un-
encrypted data (plaintext). The method presented follows the
construction described in [7] and specifies private protocols
for the enrollment and verification phases.

In this method, each multivariate weighted Gaussian from
Equation 1 is represented as a (N + 1)× (N + 1) matrix Gi:

Gi =




− 1
2Σ−1

i Σ−1
i µi

0 gi − 1
2µ

T
i Σ−1

i µi


 ,

gi = logwi − (N/2) log(2π)− (1/2) log |Σi|, (3)

where N is the size of the feature vector xt, leading to
log (wi N (xt, µi,Σi)) = xt

TGixt, with xt = [xt|1]T . The
expression for obtaining the log-likelihood between each
Gaussian and the feature vector is further simplified into
computing a single scalar product:

logP (xt|i) = log (wi N (xt, µi,Σi)) = x̂t
T Ĝi, (4)

where x̂t is an extended feature vector composed by pairwise
products xtkxtl and Ĝi is a linearization ofGi, both with size
L = (N + 1)2.

The privacy-preserving method just described is able to
achieve interesting speaker verification results, with only
slight degradation when compared to their non-private coun-
terpart. However, because of intrinsic characteristics of ho-
momorphic encryption systems, this approach is very ineffi-
cient. This happens because both private protocols must be
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Fig. 2. Scalar product using Garbled Circuits.

split into several steps, each requiring successive encryptions,
decryptions and input randomizations. Naturally, this leads to
substantial computation overheads and large execution times.

We are aware of more sophisticated techniques for per-
forming speaker verification, in particular using i-vectors [8]
instead of the UBM-GMM approach. In fact, we have pre-
viously experimented with i-vectors together with a distance-
preserving hashing technique called Secure Binary Embed-
dings (SBE) [9] for obtaining a privacy-preserving speaker
verification system [10]. However, in this work we decided to
illustrate our Gabled Circuit approach by comparing it with
the work presented in [5].

4. PRIVACY-PRESERVING SPEAKER
VERIFICATION USING GARBLED CIRCUITS

This section describes how Garbled Circuits can be used to
implement a speaker verification system where each of the
participating parties keep their personal data secret from the
others. In our technique the user is responsible for generating
the GCs and the system is responsible for evaluating them
and deciding on whether or not to authenticate the user. We
start by presenting the scalar product operation followed by
the logsum operation, then we show how they are combined
to perform a GMM evaluation, and finally we describe how
the log-likelihood ratio can be computed.

4.1. Scalar product using Garbled Circuits

The scalar product is a simple linear operation consisting
of multiplications and additions. A diagram illustrating the
scalar product between two arrays x̂t and Ĝi is presented
in Figure 2. Notice that if each element of each input array
is represented using ` bits, the output value x̂tT Ĝi needs in
theory at most 2` + p, p = dlogLe, bits to be represented.
However, in many real situations this is often not the case,
and we will address this problem in Section 5.



4.2. Logsum operation using Garbled Circuits

The logsum is a cornerstone operation to many signal pro-
cessing scenarios, and it is required to compute the occur-
rence probabilities of events in situations where underflow or
overflow problems are likely to appear. The expression for
computing the logsum of an array x̂tT Ĝ of M elements is
presented in Equation 5:

LS
(
x̂t

T Ĝ
)

= log

(
M∑

i=1

exp
(
x̂t

T Ĝi

))

= mX +log

(
M∑

i=1

exp
(
x̂t

T Ĝi −mX

))
, (5)

where mX = max
i

(
x̂t

T Ĝi

)
. The logsum over all the ele-

ments of the array can be further simplified by splitting it into
partial sums of two elements each. Since the logsum is a non-
linear operation, in order to make it practical to implement
using Garbled Circuits, each partial sum must be cast into a
linear piecewise approximation, leading to the expression in
Equation 6:

LS
(
x̂t

T Ĝi, x̂t
T Ĝj

)
= mX + log(1 + exp(mN −mX))

≈ mX + (n1 · (mN −mX) + n2), (6)

where mX and mN are the maximum and minimum of(
x̂t

T Ĝi, x̂t
T Ĝj

)
, respectively, and n1, n2 are the lineariza-

tion parameters. Similarly to the previous section, here the
increase in the number of bits ` is also a relevant matter, and
it will be further discussed in Section 5. A more complete
and detailed analysis of the logsum operation using GC can
be found in [11].

4.3. GMM evaluation using Garbled Circuits

Given the algorithms for computing the scalar product and the
logsum with GC, performing a GMM evaluation becomes a
problem trivial to solve. The diagram showing it can be done
when M = 4 Gaussians are considered is presented in Figure
3. The 4-LOGSUM block illustrates how the logsum of M
elements can be computed as the expense of several logsums
of two elements each.

4.4. Log-likelihood ratio using Garbled Circuits

The last step is to perform the ratio between the log-likelihoods
of sample x with the UBM, λU , and the user-adapted GMM,
λS . Since both of them are represented as logarithms, for
obtaining log(P (x|λS/U )) one must sum all the values
log(P (xt|λS/U )) (instead of multiplying them) and the ratio
must be computed as a subtraction (instead of a division).
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Fig. 3. Evaluation of a Garbled GMM for M = 4.

#Gaussians 16 32 64 128 256
non-private approach 5.18 4.04 2.99 2.03 1.43

GC approach (` = 16) 6.00 4.73 3.06 2.09 1.60

Table 2. Speaker verification results, EER (%age).

5. EXPERIMENTAL RESULTS

For the sake of comparison with [5], we ran experiments on
the YOHO Speaker Verification Corpus [12], consisting of
short utterances produced by 138 different speakers. Each ut-
terance contains a sequence of three two-digit numbers. The
recordings were sampled at 8kHz and stored as 16-bit words.
The corpus is split into two sets: enrollment and verification.
The enrollment set contains 96 utterances from each speaker,
totaling 14.54 hours of audio, and the verification set con-
tains 40 utterances from each speaker, totaling 6.24 hours.
All speech signals were parameterized into MFCC features
extracted from 25ms frames at the rate of 100 frames per sec-
ond. For each audio frame, we extracted 13 MFCC coeffi-
cients augmented with temporal ∆ and ∆∆, resulting in 39
features per frame. The UBM was trained using all the enroll-
ment set, and each speaker-specific model was obtained by
adapting the UBM to the enrollment data from each speaker.
We evaluated the verification set against the UBM, the correct
speaker-adapted model (positive trials) and all other speaker
models (negative trials). Afterwards, the obtained values were
used to compute the log-likelihood ratio.

The results obtained in terms of EER using both the reg-
ular speaker verification approach and our privacy-preserving
approach using GC are presented in Table 2. It is straightfor-
ward to verify that increasing the total number of Gaussians
leads not only to reduced error rates but also to smaller gaps
between our approach and the baseline. Since in both ap-
proaches the computations performed are exactly the same,
these gaps can only be justified by the number of bits ` con-
sidered and/or by the additional bits that are ignored after the



#Gaussians 16 32 64 128 256
tmean 0.089 0.179 0.360 0.723 1.436
tmax 0.092 0.185 0.376 0.777 1.476

Table 3. Speaker verification results, execution time (sec).

scalar products and the logsum operations. As mentioned
in Sections 4.1 and 4.2, each of these operations introduces
many additional bits to the output. Regarding the scalar prod-
uct, for the corpus and feature extraction process we con-
sidered, preliminary experiments revealed that all additional
bits could be discarded, as many most significant bits had the
value ’0’ and ignoring some least significant bits did not sig-
nificantly change the output values. As for the logsum, ac-
cording to the work presented in [11], ignoring all but one
of the additional bits does not seem to visibly affect the re-
sults. Therefore, it is reasonable to assume that the difference
between the results is due to ` = 16 bit numbers being con-
sidered instead of a full 32-bit floating point representation.

Since we wanted our approach to be as practical as pos-
sible to implement in real-life situations, we also analyzed it
in terms of execution time. The results we obtained are pre-
sented in Table 3. The results presented correspond to mean
and maximum time it takes, in seconds, to evaluate a Garbled
GMM, i.e., to compute a single x̂tT Ĝ, when ` = 16 is con-
sidered. They were obtained by running the experiments on
an Intel Core i7-3630QM CPU @ 2.40GHz. We notice that in
all experiments the execution times are extremely fast, given
that a privacy-preserving approach is considered. Also, the
execution time scales linearly with the number of Gaussians.
We only present the execution times for evaluating individual
frames since all the required evaluations are independent from
each other and may be computed in parallel. However, even if
we consider that only a single computer core is available, the
overall execution time would be approximately 300 seconds
(evaluating x̂tT ĜU and x̂tT ĜS for all the frames extracted
from a 4-second file sampled at 100 frames per second) for
the situation where 64 Gaussians are considered, which is still
much faster than the approach presented in [5].

6. CONCLUSIONS AND FUTURE WORK

In this work we presented a privacy-preserving system us-
ing Garbled Circuits for performing a speaker verification
task. Our approach is able to obtain similar results to the
non-private counterpart, but at the same time guarantees that
each of the participants in the protocol does not reveal his/her
private information to others. A major advantage of our
approach is that it does not require large computational over-
heads and is very efficient in terms of execution times. For
future work we plan to analyze the impact of changing the
control parameters in our approach, as well as experiment-
ing with a larger number of Gaussians for representing the
models and other corpora [13].
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