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ABSTRACT
Uniqueness of tensor decompositions is of crucial importance
in numerous engineering applications. Extensive work in al-
gebraic geometry has given various bounds involving tensor
rank and dimensions to ensure generic identifiability. How-
ever, most of this work is hardly accessible to non-specialists,
and does not apply to non-multilinear models. In this paper,
we present another approach, using the Jacobian of the model.
The latter sheds a new light on bounds and exceptions previ-
ously obtained. Finally, the method proposed is applied to a
non-multilinear decomposition used in fluorescence spectrome-
try, which permits to state generic local identifiability.

1. INTRODUCTION

The usefulness of tensors, which are represented by multiway
arrays, has been growingly recognized in the last decades, as
testified by some surveys including [1, 2]. In particular, chemo-
metrics make extensive use of tensor decompositions. For ex-
ample, in order to detect dangerous chemical components in
water, one can use fluorescence spectrometry, measuring the
components’ concentration by building Fluorescent Excitation-
Emission Matrices (FEEM) of the solution [3]. More precisely,
if inner effects are neglected, and if Raman and Rayleigh dif-
fusion phenomena are removed, the intensity recorded in the
stacked FEEM matrices can be assumed to follow rather accu-
rately the model below:
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where vectors b
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represent respectively the excitation
and emission spectra of the rth solute, a
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contains the relative
concentration of the rth solute in every experiment, and ✓ is a
parameter vector containing all vectors {c
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}. All these
quantities are a priori unknown. In other words, we measure
tensor coordinates stored in an array T , which follows a model
T ⇡ G(✓), and the goal is to identify ✓ from the sole obser-
vation of T . This problem is not specific to chemometrics, and
can be encountered in a wide panel of applications [1].
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When the integer R in (1) is minimal, it is called the rank
of tensor G and is denoted rank⌦(G). We are actually inter-
ested in a low-rank approximation of T , as in most applications
the latent information is compact and polluted by noise, which
increases the exact rank.

Mathematically speaking, the decomposition (1), often re-
ferred to as CP decomposition, is non trivial to compute [4,
2] for the following reasons. There exist at least two differ-
ences between matrices and tensors of order strictly larger than
2 [4, 2]. Firstly, a best low-rank tensor approximate does not
always exist. Secondly, the exact CP tensor decomposition may
be unique under sufficient conditions (contrary to matrices, for
which there exist an infinity of such decompositions).

Kruskal was the first to address the issue in his renowned
publication [6], and gave an upper bound on tensor rank to en-
sure global uniqueness. Tighter bounds can be found in [7,
9], which cover the n-way case as well. On the other hand,
the problem of existence of a best approximate of rank r <
rank⌦(T ) is well summarized in [4, 8].

In this paper, we address the question of generic local
uniqueness of decomposition (1) or its approximation, in other
words, local identifiability of a tensor CP model. In algebraic
geometry, computing (1) is known as the Waring problem, and
has been addressed in particular by the italian school [10, 11].
Surprising results are found for R equal or very close to what is
called the expected rank of T , that is, the rank that we expect T
to have, considering its dimensions and the fact that it is drawn
randomly according to an absolutely continuous distribution.
For engineers, the most interesting result is that if tensor rank
is strictly smaller than the expected rank minus one, the CP
identifiability is generically verified [11, 5].

Despite its power, the algebraic geometry approach of iden-
tifiability has drawbacks. First, it does not apply to non mul-
tilinear models, as described in Section 4. Moreover, a strong
mathematical background is necessary to understand these con-
tributions. Hence we suggest a simple constructive approach
for studying identifiability, whose results are globally not new,
but which extends beyond the scope of linear spaces, and offers
an easy understanding. The latter has been also used in [12] to
compute numerical simulations, but no theoretical analysis was
made therein.

In the next section we consider the canonical decomposi-
tion model given in (1), and describe the Jacobian of the model



for rank 1, and then for any rank. Section 3 exposes our con-
structive approach for detecting exceptions to the general iden-
tifiability rule of model (1). Section 4 contains our main result,
which extends previous ones to non multilinear decompositions,
as that described in [3].

2. IDENTIFIABILITY, A CONSTRUCTIVE APPROACH

As explained in the introduction, the CP model consists of a
sum of rank one tensors. Identifiability means uniqueness of
these rank one terms. A standard way to check local uniqueness
of a model is to determine whether the Jacobian of the model is
at least partially invertible (we will see in what sense later) or
not. In the following, we limit ourselves to 3-way arrays, but
the discussion can be easily extended to d-way arrays.

Let us store the entries of an array T
ijk

2 RK⇥L⇥M in a
vector of coordinates, x, of size KLM . Also note a

r

, b
r

and
c

r

, the columns of respectively A, B and C, and concatenate
them at will in a single vector ✓ of size R(K+L+M). The goal
is to fit a model G(✓) to the observed vector x. Local identifi-

ability is related to the invertibility of function G(·) in an open
neighborhood of ✓ by the local inversion theorem. Since func-
tion G(✓) is differentiable, we have the first order relationship:

dx = J(✓) d✓

where J(✓) denotes the Jacobian of G(✓), i.e. J
ij

= @G
i

/@✓
j

.
If J is full column rank, then we can compute the modified pa-
rameter vector ✓+ d✓ from the modified observed data x+ dx.
In particular, covariance matrices are related to each other as
V

x

= JV

✓

J

T , which yields V
✓

= J

†
V

x

J

†T , where (†) de-
notes the Moore-Penrose pseudo inverse. We can observe that
since V

x

is given, the conditioning of V
✓

is controlled by J.
At this stage, a link can be established with the Maximum

Likelihood (ML) approach. If observation T follows model (1)
up to an additive Gaussian noise of covariance matrix W, i.e.:

x = G(✓) + ✏ (2)

then the Fisher information matrix is given by F(✓) = E{s(x,✓)
s(x,✓)T }, where s(x,✓) = @||x � G(✓)||2

W

/@✓ is the score
function. It can be easily shown that this leads to F(✓) =
J

T

W

�1
J. In other words, when W is invertible, the Cramér-

Rao (CR) bound is finite if and only if the Jacobian J is full
column rank. When W = �2

I, CR bounds for the CP decom-
position problem can be found in [13, 14].

This local identifiability based on the conditioning of ma-
trix J(✓) can be checked either at a given point x, or at random
points. If local identifiability is satisfied almost everywhere,
for random points drawn according to an absolutely continuous
probability distribution, then we have generic local identifiabil-

ity of the model. For the CP model, we set:
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where ⇥ denotes the Kronecker product. Differentiating g

yields the expression of the KLM ⇥ (K +L+M)R Jacobian
matrix J, which can also be found in [12, 15]:

J = [a1 ⇥ b1 ⇥ Id
M

| a1 ⇥ Id
L

⇥ c1 | . . . | IdK ⇥ b

R

⇥ c

R

]

As an illustration, we give below a schematic description of
J, i.e. with (L,M,K) = (2, 2, 2) and R = 1.

J =

0
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a1b1 0 a1c1 0 b1c1 0
0 a1b1 a1c2 0 b1c2 0

a1b2 0 0 a1c1 b2c1 0
0 a1b2 0 a1c2 b2c2 0

a2b1 0 a2c1 0 0 b1c1
0 a2b1 a2c2 0 0 b1c2

a2b2 0 0 a2c1 0 b2c1
0 a2b2 0 a2c2 0 b2c2

1

CCCCCCCCCCA

Now this matrix contains all the information we need about
local uniqueness, and thus we already know that finding its rank
will be non-trivial, because of surprising exceptions that have
been already pointed out (see Section 3). Yet, we are able to dig
further in the matter with a few propositions.

The next proposition is a simple matrix interpretation of the
scaling indeterminacies in Equation (1). A necessary condition
for a matrix to admit a left inverse is that it has at least as many
rows as columns. And for a random matrix drawn according to
an absolutely continuous distribution, this condition becomes
also sufficient. We shall say that this condition is generic. For
the Jacobian matrix, from the scaling indeterminacies stem two
linear relations between the columns within every K + L +
M block, so that we have the expected property in terms of
Jacobian rank:

Proposition 1 For a generic tensor T in CK⇥L⇥M

,

rank(J)  (K + L+M � 2)R

This result is well known. In fact, loading matrices are
generically full rank, but scaling indeterminacies remain in ex-
pressions of rank-1 terms, involving 2R free parameters [6].

We call R the critical value of tensor rank defined by

R =

�
KLM

K + L+M � 2

⌫
(3)

Note that R is defined by flooring the ratio, whereas the ex-

pected rank is usually defined by ceiling it.
Proof. Denote by C

i

the ith column of matrix J previously
defined. The following two relations are verified with indices



modulo K + L+M :
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Hence there are at most R(K+L+M�2) linearly independent
columns.

Another result on CP identifiability is that a rank-1 approxi-
mation is always locally unique. In fact, this can be seen on the
Jacobian matrix, as the previous proof reveals a staircase struc-
ture in the matrix for rank 1 approximation, if one cancels out
the (M+1)th and (L+M+1)th columns in every K+L+M
block. As an example, the case where (L,M,K) = (2, 2, 3)
is depicted below: two columns are isolated and deleted (right)
yielding a triangular matrix (left).
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If the circled coefficients in the figure above are not null, we
have then extracted a triangular invertible square submatrix of
size K+L+M�2 from the Jacobian J. This will be the case if
tensor T is generic. This shows that under this condition, there
is locally a unique solution; in other words, we have proven
local identifiability, which leads to the following proposition.

Proposition 2 For R = 1 and any tensor T satisfying the

noiseless model (1) generic local identifiability is ensured.

This proposition holds true for the noisy model (2) in
the presence of small noise. In addition, from Bézout Theo-
rem, the number of solutions minimizing the Frobenius norm
||x�G(✓)||2

W

is generically finite (and bounded by 5K+L+M�2

when R = 1), since stationary points are defined by a system
of polynomial equations. Unfortunately, Proposition 2 does not
extend to ranks higher than 1, as discussed in the next section.

3. EXCEPTIONS TO IDENTIFIABILITY

Up to now, we have exposed generic results on tensor CP de-
composition, which can be intuitively interpreted with the Ja-
cobian conditioning. We defined the critical rank (3) of the ex-
act decomposition of a generic tensor as the largest integer R
that allows the Jacobian of the multilinear model (1) to have
more lines than columns. That is, the critical rank maximizes

the number of unknowns while leaving more equations than un-
knowns, and we thus expect such a model to be identifiable.
In other words, we expect equality to occur generically for all
K,L,M in the inequality of Proposition 1, and the Jacobian to
be full rank up to the scaling indeterminacies for a decomposi-
tion of rank R smaller than the critical rank.

However, in some exceptional settings, local identifiability
is generically not achieved by the CP decomposition model.
This means that linear relations between columns stem from
the structure of the Jacobian matrix, and unknowns stored in
✓ cannot be retrieved from the measurements T even though
the system has more equations than unknowns. These excep-
tions to identifiability of the CP decomposition have been stud-
ied using algebraic geometry tools in [9, 10], and we summarize
the known results that apply in our setting in the table below,
taken from [9]. Note that the so-called weak defectivity defined
therein does not mean that local uniqueness is not verified, and
is hence not reported below.

Defective unbalanced
Dimensions (K � 1)(L� 1) + 3 M
Rank (K � 1)(L� 1) + 2  R

and R < min(M,KL)

Defective
Dimensions K = L = 4 and M = 3
Rank R = 5 = R

Because a lack of identifiability infers a non left invertible
Jacobian, we should be able to give constructive proofs of the
above exceptions. However, even in the simplest defective case,
finding the exact symbolic expressions of the diagonal elements
of the triangular form of the Jacobian has shown to be inextri-
cable. Nevertheless, a computer simulation easily confirms the
degenerescence of the Jacobian in the defective cases reported
above. In this sense, algebraic geometry proves to be a more
powerful theoretical tool for studying identifiability, but the Ja-
cobian yet holds all the needed information.

4. A NON MULTILINEAR DECOMPOSITION

All the previously exposed results did not improve existing
bounds on CP identifiability, and we merely described a con-
structive alternative approach. Now, our claim is that our
method is – to our knowledge – the most efficient way to study
more exotic tensor decompositions, as subsequently demon-
strated.

4.1. Model

We are interested in a decomposition called Non Linear FEEM
Decomposition (NLFD), which appears in chemometrics [3]. It
is given by the following equation.
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where µ is a given constant, and vectors b0
r

are deduced from b

r

by truncation or zero-padding, depending on L and M : b
kr

=
b
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for k  min(L,M), and if L < M , then b
kr

= 0 for
L < k M . In [3], the definition of b0 offers the possibility to
include a shift, which we shall not take into account for the sake
of simplicity, without loss of generality. As seen in Section 2,
it is well known that CP loadings {a

r

, b
r

, c
r

} are identifiable
up to scaling indeterminacies. This result is slightly different in
the NLFD case. Denote by ↵, �, � three scaling factor vectors
of size R, such that:

G
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= vec{
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By differentiating (5) with respect to variables a
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= 1, 8r. Then, differentiation w.r.t.
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As a consequence, the scaling indeterminacy is removed in the
third mode (emission spectra in the frame of fluorescence spec-
troscopy). This leads to a new critical rank R for this decompo-
sition:

R =

�
KLM

K + L+M � 1

⌫

Regarding identifiability, the situation is the same as for the
multilinear case (Section 2). We want to fit model G

NL

(✓)
given in equation (4) to the data vector x. Let us first define
the KLM -dimensional vectors:
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where the exponential acts entry-wise. Differentiating G
NL

, we
find the following measurement relation between the data x and
the model variables ✓ :

dx = dg
NL

(✓) = h�
�
J d✓ � g(✓)� de(✓)

�
(6)

where J is the Jacobian of the CP decomposition defined in
Section 2 and � is the component-wise (so-called Hadamard)
product. In (6), the differential of the NL term takes the form:
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For the non multilinear model, we mainly answer two ques-
tions. Firstly, does the non bilinearity restore identifiability for
the matrix case obtained by degenerating the first mode, i.e.

with a single 2D measurement? If this were true, then mea-
surements in fluorescence spectrometry could be done with a
single experiment instead of repeating several experiments with
different concentrations. Secondly, how does non-multilinearity
affect exceptions to identifiability?

4.2. Matrix case

The next proposition answers the first question negatively. For
simplicity, we have considered the matrix case K = 1 as if the
factors a

r

did not appear in the NLFD Jacobian, which is not
true stricto sensu. The reason is that the arguments for rank
deficiency of the non multilinear Jacobian are strictly identical
when taking the first mode factors into account. In others words,
one may set K = 1 instead of discarding first mode.

Proposition 3 For the matrix case, i.e. with a

r

playing no role

in the NLFD, the non linear decomposition with rank R > 1
does not restore identifiability. Moreover, the rank of the Jaco-

bian J

NL

is upper bounded :

rank(J
NL

)  R (L+M � 1)

with equality only when R = 1

Proof. In the matrix case, we do not have parameters a
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so
that:

de(✓) = µ
RX

r=1

db
r

⇥ 1

M

+ 1

L

⇥ db0
r

def
= µJ

Exp

d✓

Note that J
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, of size LM ⇥R(L+M), is the sum of identity
matrices, and combinations of vectors of ones and zeros.
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We can now deduce the Jacobian of the non linear model :

dx = J

NL

(✓) d✓
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(✓) = h(✓)� (J(✓)� µg(✓)� J
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where the Hadamard product between a vector and a matrix is
the matrix defined as the iteration of the vector-vector product
for every column of the matrix. Thus, the rank of the Jacobian
J

NL

is the rank of the right-hand side of the Hadamard product
in (7). For better understanding of the structure of this matrix,
we give the Jacobian for the case L = M = 2 and R = 1:

J� µg � J
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b1 0 c1 � 2µb1c1 0
0 b1 c2 � µb1c2 �µb1c2
b2 0 �µb2c1 c1 � µb2c1
0 b2 0 c2 � 2µb2c2
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Now one can notice that it is easy to cancel out, block by
block, some Jacobian entries resulting from the exponential in
(4) by using the L first columns. The involved coefficients
should only be non-zero, which is generically true. With the
notation of Proposition 1, with indices written modulo (L+M),

C
M+i

 C
M+i

+ µc
i

C
i

With our example, it holds that J � µg � J

Exp

has same
rank as:
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b1 0 c1 � µb1c1 0
0 b1 c2 � µb1c2 0
b2 0 0 c1 � µb2c1
0 b2 0 c2 � µb2c2

1

CCA



We are then back to the multilinear case, since the matrix ob-
tained this way has the same structure as the matrix in the CP
decomposition case, and it is well known that the matrix congru-
ent diagonalization problem admits an infinity of solutions (the
SVD provides one solution among many others). Note that this
is not true for K > 1, since the last cancellation is not valid any-
more. This case is studied numerically in the next paragraph.

4.3. NLFD exceptions to identifiability

It is well known that identifiability of CP decomposition has a
few unexpected exceptions as presented in Section 3. The list is
actually not exhaustive, but the other exceptions are either not
relevant here because of the bound in Proposition 1, or deal with
global uniqueness.

One of our contributions is to consider exceptions occur-
ring in the frame of NLFD, and to show numerically that the
defective unbalanced case is distorted but present, whereas the
exception noted as defective earlier in Section 3 does not ap-
pear anymore. Computer results are reported in the tables be-
neath. Regardless of the number of iterations, the results were
the same, so that we omit these data in the results. We insist that
the results given here are generic, hence they are true in a dense
subset of tensors, but may not apply to (rare) specific tensors,
which have to be studied separately.

Because of space limitations, we present computer results in
only a few cases to enlighten the previous discussion. For var-
ious tensors dimensions, we computed the difference between
numerical rank and critical rank of the NLFD Jacobian. Simula-
tions were run on tensors constructed with uniformly drawn fac-
tors, so that results presented here are of course meant generic,
and very rare cases may not follow the rule. The following table
gives the expected rank minus the computed rank of the Jaco-
bian matrix for R = R. Expected results are zeros, others are
exceptions.

M 7 8 9
K\L 2 3 4 2 3 4 2 3 4 5

2 0 0 0 0 -5 0 -4 -5 -6 -7
3 0 0 0 -4 0 0 -4 0 0 0
4 0 0 0 0 0 0 -5 0 0 0
5 0 0 0 0 0 0 -6 0 0 0
6 0 0 0 0 0 0 0 0 0 0

If we were to characterize the exceptions, one would think
the structure is very similar to the unbalanced exception for the
CP decomposition, but with different boundaries. Moreover,
no isolated exceptions where found for the NLFD in contrast
to the defective case from section 3. From the complete data
set, a lower bound B(K,L,M) can thus be inferred, defining a
boundary between balanced and unbalanced cases in the NFLD
decomposition. The exact boundary was not determined, but we
conjecture that for M � (K � 1)(L� 1) + 3 or one of the two

other symmetric inequalities verified, exceptions do not occur
generically. This covers all practical cases in chemometrics.

5. CONCLUSION

We derived an easy approach to local identifiability. Properties
from the literature were revisited, and extended to a non multi-
linear decomposition stemming from chemometrics. The gen-
eral rule and its exceptions turn out to be different (compared to
CP) for the non multilinear model under consideration.
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