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ABSTRACT
This paper presents a new frequency method for blind sepa-
ration of mixtures of scaled and delayed versions of sources.
This kind of problem can occur in air and underwater acous-
tics. By assuming the mutual independence of the sources, we
make use of the power spectral densities and the cross power
spectral densities of mixed data to estimate the sources, the
mixing coefficients, and the relative delays between a refer-
ence sensor and the other sensors. Simulations on synthetic
data of sound radiated by a ship show the effectiveness of the
proposed method.

Index Terms— Blind source separation, Anechoic mix-
ture, Relative delays, Power spectral density, Ship noise, Un-
derwater acoustics.

1. INTRODUCTION

We deal with the problem of source separation when the
mixed data are linear combinations of delayed versions of the
sources. Such a model is known as an anechoic mixture [1] or
a pure delays mixture [2], and this can occur in many areas,
such as biomedical signal processing [3], and acoustic source
demixing in nonreverberant environments [4]. The mixing
model is given by (1):

xk(t) =

L∑
l=1

aklsl (t− τkl) + bk(t). (1)

where xk, 1 ≤ k ≤ K, is the signal recorded at sensor k, sl,
1 ≤ l ≤ L, is the l-th source, akl is the mixing coefficient of
source l at sensor k (akl ≥ 0), τkl is the propagation delay
between source l and sensor k (τkl ≥ 0), and bk is additive
noise on sensor k. The task is to estimate the source, the
mixing coefficients, and the delays.
Many algorithms have been proposed for solving this prob-
lem (1), including temporal [3, 4], frequency [2], and time-
frequency [5, 6] methods. By assuming that the sources
are bandlimited and the delays are small (typically, ∀ k, l

This work was supported by the French DGA - MRIS (grant RAPID
ARMADA).

SigmaPhy team from Gipsa-lab is part of Labex OSUG@2020 (ANR10
LABX56).

τkl <<
1√

2πfmax
where fmax is the maximal frequency of

the sources) [4], and by making use of the Taylor expansion
of the exponential function, the temporal methods model the
mixed data by an instantaneous linear combination of the
sources and their derivatives. The new problem is solved by
joint diagonalization of a set of matrices that are obtained
from the autocovariance matrix of whitened mixed data [3,4].
Unfortunately, temporal methods require a number of sensors
at least twice that of the number of sources, which is a limita-
tion in the context of a small number of sensors. In addition,
existing temporal methods do not explicitly take into account
that the mixing matrix can be ill-conditioned.
Yeredor proposed a frequency method to solve (1), which
consists of jointly diagonalizing the matrices of the power
spectral densities (PSDs) and cross PSDs of mixed data, for
the different frequencies [2]. However, his method is limited
to the case where K = L = 2, and its extension to L > 2 is
not obvious. Nion et al. proposed a time-frequency method
that uses the short-time Fourier transform of mixed data and
alternating least-squares estimation, coupled with enforcing a
Vandermonde structure of the estimated mixing matrix across
its frequency mode [5]. This method also does not take into
account the case where the mixing matrix is ill-conditioned.
By using the Wigner-Ville distributions Omlor and Giese
proposed a two-step time-frequency method [6], which starts
by estimating the mixing coefficients and the modulus of the
source Fourier transforms, followed by iterative estimation of
the delays and phases of the source Fourier transforms. We
were inspired by this approach to design the the method we
proposed here.

This paper presents a three-step frequency method for
solving (1). In the first step, we estimate the mixing co-
efficients and the modulus of the Fourier transforms of the
sources. In the second step, we estimate the relative delays
between a reference sensor and the other sensors. Finally,
in the third step, the phases of the Fourier transforms of the
sources and the source temporal profiles are estimated. Our
method has the same steps as that proposed in [6]. The main
differences lie in the estimation of the delays and the phases
of the source Fourier transforms, where we propose a noniter-
ative method, and we explicitly take into account the mixing
matrix conditioning. In addition, we do not use Wigner-Ville
distributions.



This paper is organized as follows: section 2 describes the
three steps of the proposed method. In section 3, we show
simulation results on synthetic data, while section 4 derives
the conclusions and provides direction for future studies.

2. PROPOSED METHOD

For designing our method, we assume that:
• (H1): The sources are zero-mean random variables that

are mutually independent and stationary.

• (H2): The number of sensors is greater than the number
of sources: K > L.

• (H3): The noise components are Gaussian with zero-
mean, mutually independent, and independent of sources.

2.1. Estimation of the mixing coefficients and modulus of
the source Fourier transforms

The mixed data autocorrelation functions are defined by (2),
where E is the expectation operator.

Rxk
(u) = E [xk(t)xk(t+ u)] . (2)

Given (1), and because of assumptions (H1) and (H2), it can
easily be verified that:

Rxk
(u) =

L∑
l=1

a2
klRsl(u) +Rbk(u). (3)

whereRsl(u) andRbk(u) are the autocorrelation functions of
the sources and the noise, respectively. By taking the Fourier
transform of (3), we obtain (4):

Γxk
(f) =

L∑
l=1

a2
klΓsl(f) + Γbk(f). (4)

where Γsl(f), Γxk
(f) and Γbk(f) are the PSDs of the

sources, the mixed data and the noise at sensor k, respectively.
Let us assume that there is access to frames of recorded data
where the sources are not active, we can then compute an
estimate of the PSD of bk, Γ̂bk(f), and deduce the denoised
PSD of xk through (5).

Γ̃xk
(f) = Γxk

(f)− Γ̂bk(f)

≈
L∑
l=1

a2
klΓsl(f).

(5)

Note that a2
kl > 0 and Γsl(f) ≥ 0, so to make sure that

Γ̃xk
(f) ≥ 0, we set Γ̃xk

(f) = max
(

Γ̃xk
(f), 0

)
.

In the remaining part of this section, we will use the denoised
PSDs of mixed data that we group in vector Γ̃x(f) through

(6). We also group the PSDs of sources in vector Γs(f)
through (7).

Γ̃x(f) = [Γ̃x1
(f), Γ̃x2

(f), · · · , Γ̃xK
(f)]T . (6)

Γs(f) = [Γs1(f),Γs2(f), · · · ,ΓsL(f)]T . (7)

Equation (5) can be rewritten in a compact form as (8):

Γ̃x(f) ≈ HΓs(f). (8)

where H is aK×L-size matrix where the kl-th entry is given
by hkl = a2

kl. Equation (8) shows that the denoised PSDs
of the mixed data are a linear instantaneous combination of
the source PSDs. We can then estimate the matrix H and the
source PSDs, using a classical algorithm of independent com-
ponents analysis [7] or nonnegative matrix factorization [8].
The estimated components ĥkl and Γ̂sl(f) are scaled versions
of hkl and Γsl(f) [7, 8]. It is possible to estimate the scaled
versions of the modulus of the source Fourier transforms, and
the mixing coefficients, through (9):

âkl =

√
ĥkl and |Ŝl(f)| =

√
Γ̂sl(f). (9)

2.2. Estimation of the relative delays between a reference
sensor and the other sensors

Let us set a reference sensor r. For k 6= r, the cross-
correlation function between xk and xr is defined by:

Rxkxr
(u) = E [xk(t)xr(t+ u)] . (10)

Using the working hypothesis, the cross-correlation function
is given by:

Rxkxr
(u) =

L∑
l=1

aklarlRsl(u+ τkl − τrl). (11)

Note that in Rxkxr
(u) we do not have a term that is related to

the noise, as the noise components are assumed to be mutu-
ally independent and independent of the sources.
The Fourier transform of (11) leads to the relationship be-
tween the cross PSDs of the mixed data and the PSDs of the
sources, as follows:

Γxkxr (f) =

L∑
l=1

aklarlΓsl(f)eı2πf [τkl−τrl]. (12)

We define the relative delays ζkl = τkl − τrl and the set of
frequencies F by:

F = {f,
√

2πfζkl � 1}. (13)

Given the propagation velocity c, and the distance between
the sensor k and the reference sensor r, dkr, a frequency fl ∈
F if

fl �
c√

2πdkr
. (14)



For a frequency f ∈ F , we can approximate eı2πfζkl by its
first-order Taylor expansion [4], such that:

eı2πfζkl ≈ 1 + ı2πfζkl. (15)

Equation (12) can be rewritten as (16):

Γxkxr
(f) ≈

L∑
l=1

aklarlΓsl(f) [1 + ı2πfζkj ] (16)

and we deduce that:

= [Γxkxr
(f)]

2πf
≈

L∑
l=1

aklarlΓsl(f)ζkl (17)

where = [Γxkxr
(f)] is the imaginary part of Γxkxr

(f). Let us
choose L frequencies f1, f2, · · · , fL that belong in F , and

set the vector Υkr =

[
=[Γxkxr (f1)]

2πf1
, · · · , =[Γxkxr (fL)]

2πfL

]T
, the

vector ζk = [ζk1, · · · , ζkL]
T , and Ukr the L × L size matrix

where the il-th entry is defined by [Ukr]il = aklarlΓsl(fi),
then:

Υkr = Ukrζk. (18)

An estimate of Ukr is given by
[
Ûkr

]
il

= âklârlΓ̂sl(fi).

Since
[
Ûkr

]
is square and well-conditionned, one can com-

pute ζ̂k by:

ζ̂k =
[
Ûkr

]−1

Υkr. (19)

It should be noted that when the purpose is localization, an
estimation of the relative delays is generally sufficient.

2.3. Estimation of the phases of the Fourier transforms of
the sources, and of their temporal profiles

The last step of our method is the estimation of the phases of
the Fourier transforms of the sources, to compute their tem-
poral profiles. For a fixed reference sensor r, we define yl, a
delayed version of sl, through (20), where τrl is the delay in
the arrival of the source sl at sensor r:

yl(t) = sl(t+ τrl). (20)

We seek here to estimate yl(t). Let Yl(f), respectively Sl(f),
be the Fourier transform of yl(t), respectively sl(t). We set
Yl(f) = |Yl(f)|eıϕyl

(f) and Sl(f) = |Sl(f)|eıϕsl
(f), where

|Yl(f)| and ϕyl(f) (respectively |Sl(f)| and ϕsl(f)) are the
modulus and the phase, respectively, of the Fourier transform
of yl(t) (respectively sl(t)), at frequency f . Then:

|Yl(f)| = |Sl(f)| and ϕyl(f) = ϕsl(f) + 2πfτrl. (21)

When replacing sl by yl in (1), this gets:

xk(t) =

L∑
l=1

aklyl (t+ τrl − τkl) + bk(t)

=

L∑
l=1

aklyl (t− ζkl) + bk(t).

(22)

Fourier transforming (22) leads to the relationship between
the Fourier transforms of mixed data xk and the Fourier trans-
forms of the delayed sources yl, as given by (23):

Xk(f) =

L∑
l=1

aklYl(f)e−ı2πfζkl +Bk(f)

=

L∑
l=1

akl|Yl(f)|eıϕyl
(f)e−ı2πfζkl +Bk(f).

(23)

Equation (23) can also be expressed as:

X(f) = MΦ(f) + B(f) (24)

where the vector X(f) = [X1(f), X2(f), · · · , XK(f)]T , the
vector B(f) = [B1(f), B2(f), · · · , BK(f)]T , and the vector
Φ(f) = [eıϕy1

(f), eıϕy2
(f), · · · , eıϕyL

(f)]T . The matrix M is
of size K × L, and the kl-th entry of M is defined by:

mkl = akl|Yl(f)|e−ı2πfζkl . (25)

The entry mkl can be estimated using (9), (19) and (21). Fi-
nally, the source Fourier transform phases can be estimated
by solving the optimization of Equation (26).

Φ̂(f) = arg min
Φ(f)

‖X(f)−MΦ(f)‖22 + λ‖Φ(f)‖22. (26)

The Tikhonov regularization term is added in this optimiza-
tion, because the matrix M can be ill-conditionned, especially
when the sensors are close to each other. The regularization
parameter λ can be computed by the L-curve method [9] [10].
After estimation of the phases of the source Fourier trans-
forms, at each frequency, we can estimate the temporal profile
of yl(t) through (27), where |Ŷl(f)| = |Ŝl(f)|.

ŷl(t) = IFFT
[
|Ŷl(f)|eıϕ̂yl

(f)
]

(27)

It should be noted that each source is estimated up to an un-
known scale and delay, and only the relative delays between
the reference sensor and other sensors are estimated. This is
not a fundamental limitation, as the unknown scale and delay
are the intrinsic indeterminates related to the demixing of a
convolutive mixture. Indeed, our mixture model given (1) is
a special case of a convolutive mixture.

3. SIMULATION RESULTS

This section presents the simulation results on synthetic data
of ship noise sources in underwater acoustics. The proposed
method is compared to the temporal method proposed by [3]
and to the time-frequency method proposed by [5].
The efficiency of the source estimation is quantified by the
signal-to-interference ratio (SIR) which is defined in [11]. To
compute the SIR, the estimated source ŝl is decomposed as:

ŝl = starget + einterf + enoise + eartifact. (28)



where starget is a version of sl modified by an allowed dis-
tortion, and where einterf , enoise, and eartifact are the in-
terference, noise, and artifact error terms, respectively. The
reader is referred to [11] for more details of the previous de-
composition. The SIR for estimated source l is computed
through (29). The larger the SIR, the better the separation,
and it can be assumed that a source is correctly estimated if
SIRl(dB) ≥ 15.

SIRl = 10 log10

‖starget‖2

‖einterf‖2
. (29)

The accuracy of the estimated relative delays of the source l is
quantified using the normalized mean error (NME), as defined
by (30). The smaller the NME, the better the estimation of the
relative delays.

NMEl =

1
K

K∑
k=1

|ζ̂kl − ζkl|

1
K

K∑
k=1

|ζkl|
. (30)

Synthesis of mixed data
We consider the scenario where two omnidirectional point
acoustic sources that are located in differents positions ra-
diate in an underwater environment. The acoustic waves
radiated by these sources propagate to a linear antenna of
five hydrophones. The distance between two consecutive
hydrophones is 50 cm. The not-to-scale Figure 1 illustrates
the simulated scenario. The planes of the sources and the
sensors are spaced at 10 m. The mixed data are generated by

Fig. 1. Simulated scenario.

Equation (1), where the mixing coefficients and the delays are
given by akl = 1

Dkl
and τkl = Dkl

c , respectively. Dkl is the
distance between the source l and the sensor k, and c is the
sound velocity. The reflections on the surface are not consid-
ered in this simulation. The first source is formed by a tone at
frequency 180 Hz and a broadband component; the second
source consists of three sinusoids at frequencies 510 Hz,
720 Hz and 960 Hz. The two sources roughly simulate the
sound radiated by a propeller and the vibrations of the hull of
a ship, respectively [12] [13]. The temporal profiles and the
power spectral densities of the original sources are plotted in
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Fig. 2. The original sources.

Figure 2. We set the sound velocity to c = 1500 m/s, the
sampling frequency to fs = 44100 Hz, and the duration to
T = 10 s. Each of the simulated noise-free mixed data is
corrupted by a zero-mean additive white Gaussian, where the
signal-to-noise ratio defined by (31) is set to 10 dB.

SNRk = 10 log10

(
Px̄k

Pbk

)
. (31)

where Px̄k
is the power of the noise-free mixed data given by

(32), and Pbk is the power of the noise.

x̄k(t) =

L∑
l=1

aklsl (t− τkl) . (32)

Figure 3 shows the estimated sources, while Tables 1
and 2 give the SIR and the NME for the three methods (i.e.,
proposed frequency method, temporal method, and time-
frequency method).

Proposed Temporal Time-frequency
ŝ1 28.89 18.73 -9.22
ŝ2 23.71 14.62 9.49

Table 1. Signal-to-interference ratio (dB).

Proposed Temporal Time-frequency
ŝ1 0.12 0.76 1.54
ŝ2 0.51 0.83 1.03

Table 2. Normalized mean error on the relative delays.

It can be seen from Figure 3 that the proposed method,
and the temporal method, correctly estimates the temporal
profiles and the PSDs of both of the sources. There is a
residue of the estimation of each source in the second one,
which can be seen in the PSDs of estimated sources. The
time-frequency method appears to fail; this might be because
it includes an alternating least square and the mixing matrix
is ill-conditionned. Table 1 shows that the proposed method
presents the best SIR for both source 1 and source 2. The
small value of the SIR of estimated source 2 can be explained
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Fig. 3. Estimated sources.

because the energy of the broadband component of the residue
of estimated source 1 is relatively high compared to the en-
ergy of the three tones of estimated source 2. From Table 2,
we see that the proposed method has the lowest NME, which
indicates that our method has the best estimates of the relative
delays.

4. CONLUSION AND FUTURE STUDIES

In this paper, we have developed a frequency method for the
blind separation of an anechoic mixture. Our method first es-
timates the mixing coefficients and the modulus of the source
Fourier transforms, followed by estimation of the relative de-
lays between a reference sensor and the other sensors. The
last step consists of the estimation of the phases of the source
Fourier transform and the temporal profiles of the sources.
Simulations on synthetic data show that the proposed method
outperforms some of the existing methods, especially when
the mixing matrix is ill-conditioned. Future works will in-
clude an evaluation of this proposed method on real data, and
the inclusion of reflected paths in the mixing model. The case
of moving sources will also be investigated.
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