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ABSTRACT

The analysis of hyper-spectral images is often needed to re-
cover physical properties of planets. To address this inverse
problem, the use of learning methods have been considered
with the advantage that, once a relationship between physical
parameters and spectra has been established through training,
the learnt relationship can be used to estimate parameters
from new images underpinned by the same physical model.
Within this framework, we propose a partially-latent regres-
sion method which maps high-dimensional inputs (spectral
images) onto low-dimensional responses (physical param-
eters). We introduce a novel regression method that com-
bines a Gaussian mixture of locally-linear mappings with
a partially-latent variable model. While the former makes
high-dimensional regression tractable, the latter enables to
deal with physical parameters that cannot be observed or,
more generally, with data contaminated by experimental arti-
facts that cannot be explained with noise models. The method
is illustrated on images collected from the Mars planet.

Index Terms— Hyper-spectral images; Regression; Di-
mension reduction; Mixture models; Latent variable model.

1. INTRODUCTION

The analysis of hyper-spectral images often involves to solve
an inverse problem to deduce a number of physical parameter
values from the observed spectra. This typically requires the
estimation of a high-dimensional to low-dimensional map-
ping, which is challenging. Among others, statistical learning
methods have been considered with the advantage that, once
a relationship between physical parameters and spectra has
been established through training, the learnt relationship can
subsequently be used to estimate parameters from new images
underpinned by the same physical model [1]. To obtain train-
ing data, radiative transfer models have been developed, that
link the chemical composition, the granularity, or the physi-
cal state, to the observed spectrum. They are generally used
to simulate huge collections of spectra in order to perform the
inversion of hyper-spectral images [2].
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Within this framework, we propose a novel regression
method. Regression is a fully supervised method that uses
input-response pairs of observed data to infer a mapping, and
this mapping is then used to predict a response value from an
observed input. It is well known that high-dimensional re-
gression is a difficult problem because of the very high num-
ber of parameters to be estimated. To address this problem
we propose a probabilistic framework, first to learn the pa-
rameters of a low-to-high Gaussian mixture of locally-linear
regressions, and second to derive the posterior conditional
density of the response given an observed input and the es-
timated model parameters. We show that, by exchanging the
roles of input and response variables during training, high-
dimensional regression becomes tractable and the conditional
density of the response has a closed-form solution. More-
over, we propose to incorporate a latent component: while the
high-dimensional variable remains fully observed, the low-
dimensional variable is the concatenation of an observed vec-
tor and of an unobserved (latent) vector. The latent compo-
nent enables us to deal with those physical parameters that
cannot be observed during training, or to prevent the observed
parameters to be contaminated by experimental artifacts that
cannot be explained with noise models.

This model is particularly suited for hyper-spectral imag-
ing, because the computing resources required by radiative
transfer models to generate training data increases exponen-
tially with the number of parameters. Thus, they are generally
restricted to a small number of parameters, e.g., abundance
and grain size of the main chemical components. Other pa-
rameters, such as those related to meteorological variability
or the incidence angle of the spectrometer are not explicitly
modeled and measured. Our method allows to deal with such
non-anotated effects by explicitely incorporating a latent part
in the low dimensional response variable. This allows some
form of slack in the observations due to unknown effects.

Regression has been extensively studied in the literature.
To deal with high-dimensional input data, most methods first
reduce the dimensionality based on response variables, be-
fore performing the actual regression [3–5]. Such two-step
approaches cannot be conveniently expressed in terms of a
single optimization problem. To estimate non-linear map-
pings, mixtures of locally linear models have been investi-
gated [6–8], but not in the case of high dimensional inputs



and partially-observed responses. An alternative popular ap-
proach is to use kernel functions, [4, 9–11], with the draw-
back that these functions cannot be appropriately chosen au-
tomatically, and that the mappings learned cannot be inverted.
A more detailed description of the proposed approach and
its relation to existing methods is available as a research re-
port [12].

2. REGRESSION WITH PARTIALLY-LATENT
RESPONSE VARIABLES

We describe a regression method that maps a low-dimensional
variable X onto a high-dimensional variable Y . We start by
describing the GLLiM (Gaussian Locally Linear Mapping)
model, in which both X and Y are fully observed. Then we
introduce the hybrid GLLiM (hGLLiM) model that treats X
as a partially latent variable. Once the parameters of the hy-
brid GLLiM model are estimated, we provide a closed-form
expression for the high-dimensional to low-dimensional map-
ping. GLLiM relies on a piecewise linear model in the follow-
ing way. Let {xn}n=N

n=1 ∈ RL, {yn}n=N
n=1 ∈ RD, L� D, and

(y,x) is a realization of (Y ,X), such that y is the image ofx
by an affine transformation τk, among K, plus an error term.
This is modeled by a missing variable Z such that Z = k if
and only if Y is the image ofX by τk.

The following decomposition of the joint probability dis-
tribution will be used: p(Y = y,X = x;θ) =

∑K
k=1 p(Y =

y|X = x, Z = k;θ)p(X = x|Z = k;θ)p(Z = k;θ),
where θ denotes the vector of model parameters. The locally
affine function that mapsX onto Y is:

Y =
K∑

k=1

I(Z = k)(AkX + bk +Ek) (1)

where I is the indicator function, matrix Ak ∈ RD×L and
vector bk ∈ RD define the transformation τk and Ek ∈ RD

is an error term capturing both the observation noise in RD

and the reconstruction error due to the local affine approxima-
tion. Under the assumption that Ek is a zero-mean Gaussian
variable with covariance matrix Σk ∈ RD×D that does not
depend onX , Y , and Z, we obtain:

p(Y = y|X = x, Z = k;θ) = N (y; Akx+ bk,Σk). (2)

To complete the above hierarchical definition and enforce the
affine transformations to be local, X is assumed to follow a
mixture of K Gaussians defined by

p(X = x|Z = k;θ) = N (x; ck,Γk)
p(Z = k;θ) = πk

where ck ∈ RL, Γk ∈ RL×L and
∑K

k=1 πk = 1. The param-
eters of this model are:

θ = {ck,Γk, πk,Ak, bk,Σk}Kk=1. (3)

The model just described can be learned with standard
EM inference methods if X and Y are both observed. The
key idea in this paper is to treat X as a partially-latent vari-
able, namely

X =
[
T
W

]
,

where T ∈ RLt is observed and W ∈ RLw is latent (L =
Lt + Lw). In hybrid GLLiM, parameter estimation uses ob-
served pairs {yn, tn}Nn=1 while it must also be constrained
by the presence of the latent variableW . This can be seen as
a latent-variable augmentation of classical regression, where
the observed realizations of Y are affected by the unobserved
variableW . It can also be viewed as a variant of dimensional-
ity reduction since the unobserved low-dimensional variable
W must be recovered from {(yn, tn)}Nn=1. The decomposi-
tion of X into observed and latent parts implies that some of
the model parameters must be decomposed as well, namely
ck, Γk and Ak. Assuming the independence of T and W
given Z we write:

ck =
[
ct

k

cw
k

]
,Γk =

[
Γt

k 0
0 Γw

k

]
,Ak =

[
At

k Aw
k

]
.

We devised two EM algorithms to estimate the param-
eters of the proposed model. The principle of the sug-
gested algorithms is based on a data augmentation strat-
egy that consists of augmenting the observed variables with
the unobserved ones, in order to facilitate the subsequent
maximum-likelihood search over the parameters. There
are two sets of missing variables, Z1:N = {Zn}Nn=1 and
W 1:N = {W n}Nn=1, associated with the training data set
(y, t)1:N = {yn, tn}Nn=1, given the number K of linear
components and the latent dimension Lw. Two augmenta-
tion schemes arise naturally. The first scheme is referred
to as general hybrid GLLiM-EM, or general-hGLLiM, and
consists of augmenting the observed data with both variables
(Z,W )1:N while the second scheme, referred to as marginal-
hGLLiM, consists of integrating out the continuous variables
W 1:N previous to data augmentation with the discrete vari-
ables Z1:N . A particularly interesting feature of general-
hGLLiM is that both the E-step and M-step can be computed
in closed-form for various constraints on the noise covari-
ances {Σk}Kk=1, including “equal for all k”, isotropic, and
diagonal constraints. On the other hand, marginal-hGLLiM
only has closed-form steps in the isotropic case, but is eas-
ier to initialize. Therefore, the latter is used to initialize the
former in practice. Full details on the analytical steps of the
resulting hGLLiM algorithm are given in [12], and a Matlab
toolbox implementing it is available online1.

Once the parameter vector θ has been estimated by the

1https://team.inria.fr/perception/gllim toolbox/



algorithm, one can derive the following conditional density:

p(X = x|Y = y;θ∗) =
K∑

k=1

π∗kN (y; c∗k,Γ
∗
k)∑K

j=1 π
∗
jN (y; c∗j .Γ

∗
j )
N (x; A∗ky + b∗k,Σ

∗
k) (4)

which is a Gaussian mixture with K components. Notice that
the parameters associated with this mixture:

θ∗ = {c∗k,Γ
∗
k, π
∗
k,A

∗
k, b
∗
k,Σ

∗
k}Kk=1 (5)

are obtained analytically from the learned parameters (3) us-
ing the following formulae:

c∗k = Akck + bk, Γ∗k = Σk + AkΓkA>k , π∗k = πk,

A∗k = Σ∗kA>k Σ−1
k , b∗k = Σ∗k(Γ−1

k ck − A>k Σ−1
k bk),

Σ∗k = (Γ−1
k + A>k Σ−1

k Ak)−1. (6)

To predict an output one can use the expectation of (4):

E[X|y;θ∗] =
K∑

k=1

πkN (y; c∗k,Γ
∗
k)∑K

j=1 πjN (y; c∗j ,Γ
∗
j )

(A∗ky + b∗k). (7)

3. RETRIEVING MARS PHYSICAL PROPERTIES
FROM HYPER-SPECTRAL IMAGES

Visible and near infrared imaging spectroscopy is a key re-
mote sensing technique used to study and monitor planets. It
records the visible and infrared light reflected from the planet
in a given wavelength range and produces cubes of data where
each observed surface location is associated with a spectrum.
Physical properties of a planet surface, such as chemical com-
position, granularity, texture, etc., are some of the most im-
portant parameters that characterize the morphology of the
spectra. In case of Mars, radiative transfer models have been
developed to numerically evaluate the connection between
these parameters and observable spectra. Such models al-
low to simulate spectra from a given set of parameter val-
ues [2]. In practice, the goal is to scan Mars’s ground from
an orbit in order to observe gas and dust in the atmosphere
and seek for signs of specific materials such as silicates, car-
bonates, or ice at the surface. We are therefore interested in
solving the associated inverse problem, namely to infer physi-
cal parameter values from the observed spectra. Since this in-
verse problem cannot generally be solved analytically, the use
of optimization or statistical methods has been investigated,
e.g., [1]. In particular, supervised statistical learning has been
considered with the advantage that, once a relationship be-
tween physical parameters and spectra has been established
trough training, the learned relationship can then be used for
very large datasets and for all new images underpinned by the
same physical model.

Within this category of methods, we investigate the poten-
tial of the proposed hybrid GLLiM model using a dataset of
hyper-spectral images collected from the imaging spectrom-
eter OMEGA instrument [13] onboard of the Mars express
spacecraft. To this end a database of synthetic spectra with
their associated physical parameter values were generated us-
ing a radiative transfer model. This database is composed
of 15,407 spectra associated with five real parameter values,
namely, (i) proportion of water ice, (ii) proportion of CO2 ice,
(iii) proportion of dust, (iv) grain size of water ice, and (v)
grain size of CO2 ice. Each spectrum is made of 184 wave-
lengths. Hybrid GLLiM is used, first to learn a low-to-high
dimensional regression function between physical parameters
and spectra from the database, and second to estimate the the
unknown physical parameters corresponding to a new spec-
trum using the learned function. Since no ground truth is
available for Mars, the synthetic database will also serve as
a test dataset to evaluate the accuracy of the predicted param-
eter values. In order to fully illustrate the potential of hy-
brid GLLiM, we deliberately ignore two of the five param-
eters in the database and consider them as latent variables.
During training, we excluded the observed values of the pro-
portion of water ice and the grain size of CO2 ice. A previous
study [1] revealed that these two parameters were sensitive
to the same wavelengths, in comparison with the proportion
of dust and are suspected to mix with the other two parame-
ters in the synthetic transfer model. Therefore, not only that
they are harder to estimate but they seem to affect the estima-
tion of two other parameters. Moreover, we observed that if
these two parameters are treated as observed variables during
the learning stage, they tend to degrade the estimation of the
other three parameters, which are of particular interest.

The hGLLiM algorithm was compared to JGMM (joint
Gaussian mixture model) [7], SIR (sliced inverse regression)
[3], RVM (multivariate relevance vector machine) [11] and
MLE (mixture of linear experts) [6]. SIR is used with one
(SIR-1) or two (SIR-2) principal axes for dimensionality re-
duction, 20 slices (the number of slices is known to have
very little influence on the results), and polynomial regres-
sion of order three (higher orders did not show significant
improvements in our experiments). SIR quantizes the low-
dimensional data X into slices or clusters which in turn in-
duces a quantization of the Y -space. Each Y -slice (all points
yn that map to the same X-slice) is then replaced with its
mean and PCA is carried out on these means. The result-
ing dimensionality reduction is then informed by X values
through the preliminary slicing. RVM may be viewed as a
multivariate probabilistic formulation of support vector re-
gression [14]. As all kernel methods, it critically depends
on the choice of a kernel function. Using the authors’ freely
available code2, we ran preliminary tests to determine an op-
timal kernel choice for each dataset considered. We tested

2http://www.mvrvm.com/Multivariate Relevance Vector



Table 1. Normalized root mean squared error (NRMSE) for Mars surface physical properties recovered from hyper-spectral
images, using synthetic data and different methods.

Method Proportion of CO2 ice Proportion of dust Grain size of water ice
JGMM 0.83± 1.61 0.62± 1.00 0.79± 1.09
SIR-1 1.27± 2.09 1.03± 1.71 0.70± 0.94
SIR-2 0.96± 1.72 0.87± 1.45 0.63± 0.88
RVM 0.52± 0.99 0.40± 0.64 0.48± 0.64
MLE 0.54± 1.00 0.42± 0.70 0.61± 0.92

hGLLiM-1 0.36± 0.70 0.28± 0.49 0.45± 0.75
hGLLiM-2∗† 0.34 ± 0.63 0.25 ± 0.44 0.39 ± 0.71

hGLLiM-3 0.35± 0.66 0.25± 0.44 0.39± 0.66
hGLLiM-4 0.38± 0.71 0.28± 0.49 0.38± 0.65
hGLLiM-5 0.43± 0.81 0.32± 0.56 0.41± 0.67

hGLLiM-20 0.51± 0.94 0.38± 0.65 0.47± 0.71
hGLLiM-BIC 0.34 ± 0.63 0.25 ± 0.44 0.39 ± 0.71

14 kernel types with 10 different scales ranging from 1 to 30,
hence, 140 kernels for each dataset in total.

An objective evaluation was done by cross validation. We
selected 10,000 training couples at random from the training
set, tested on the 5,407 remaining spectra, and repeated this
20 times. For all algorithms, training data were normalized
to have 0 mean and unit variance using scaling and translat-
ing factors. These factors were then used on test data and
estimated output to obtain final estimates. This technique
showed to noticeably improve results of all methods. We used
K = 50 for MLE, hGLLiM and JGMM. MLE and JGMM
were constrained with equal, diagonal covariance matrices as
they yield the best results. For RVM, the best out of 140 ker-
nels was used. A third degree polynomial kernel with scale 6
showed the best results using cross-validation on a subset of
the database. As a quality measure of the estimated param-
eters, we computed the normalized root mean squared error,
or NRMSE3, which quantifies the difference between the es-
timated and real parameter values. NRMSE is normalized en-
abling direct comparison between the parameters which are of
very different range: the closer to zero, the more accurate the
predicted values. Table 1 shows NRMSE values obtained for
the three parameters considered here. The ground-truth latent
variable dimension is L∗w = 2, and accordingly, the empiri-
cally best dimension for hGLLiM was L†w = 2. hGLLiM-2
outperformed all the other methods on that task, more pre-
cisely the error is 36% lower than the second best-performing
method, RVM, closely followed by MLE. No significant dif-
ference was observed between hGLLiM-2 and hGLLiM-3.
Note that due to the computation of the D × D kernel ma-
trix, the computational and memory costs of RVM for train-
ing were about 10 times higher than those of hGLLiM, using
MATLAB implementations. We also tested the selection of
the latent dimension (Lw) based on BIC [12]. For each train-

3NMRSE =

r PM
m=1(t̂m−tm)2PM
m=1(tm−t)2

with t = M−1
PM

m=1 tm.

ing set, the hGLLiM-BIC method minimized BIC with the
latent dimension in the range 0 ≤ Lw ≤ 20, and used the
corresponding model to perform the regression. Interestingly,
hGLLiM-BIC performed very well on these large training sets
(N = 10, 000) as it correctly selectedLw = 2 for the 20 train-
ing sets used by BIC (the BIC selection could differ with the
training set), yielding the same results as those obtained with
hGLLiM-2.

Finally, we used an adequately selected subset of the syn-
thetic database, e.g., [1] to train the algorithms, and test them
on real data made of observed spectra. In particular, we focus
on a dataset of Mars South polar cap. Since no ground truth
is currently available for the physical properties of Mars’s
South pole regions, we propose a qualitative evaluation using
hGLLiM-2 and the three best performing methods, among the
tested ones, namely RVM, MLE and JGMM.

We used these four methods in order to extract physical
parameters from two hyper-spectral images that correspond,
approximately, to the same area but from different view points
(orbit 41 and orbit 61). Since we are looking for propor-
tions between 0 and 1, values smaller than 0 or higher than
1 are not acceptable and hence they were set to either one
of the bounds. As it can be seen in Fig. 1, hGLLiM-2 es-
timates proportion maps with similar characteristics for the
two view points, which suggests a good consistency of the
method. Such a consistency is not observed using the other
three tested methods. In addition, RVM and MLE estimate
a much higher number of values falling outside the interval
[0, 1]. Moreover, hGLLiM-2 is the only method featuring less
dust at the South pole cap center and higher concentrations
of dust at the boundaries of the CO2 ice, which matches ex-
pected results from planetology [15]. Finally, note that the
proportions of CO2 ice and dust clearly seem to be comple-
mentary using hGLLiM-2, while this complementarity is less
obvious using other methods.



hGLLiM-2 RVM MLE JGMM
(a) Proportion of dust
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Fig. 1. Proportions obtained with our method (hGLLiM-2) and three other methods. The data correspond to hyper-spectral
images grabbed from two different viewpoints of the South polar cap of Mars. Left: orbit 41, Right: orbit 61. White areas
correspond to unexamined regions, where the synthetic model does not apply.

4. CONCLUSIONS

We proposed a new high-dimensional regression method al-
lowing for partially latent responses. This novel approach
outperformed 4 state-of-the-art regression methods in hyper-
spectral image analysis. A promising extension would be to
take into account dependencies between adjacent pixels in
images to enforce smoothness. This could be done using
Markov Random field. More complex noise models could
also be investigated via Student distributions (e.g. [8]) to al-
low for outliers accommodation and more robust estimation.
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