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ABSTRACT

Semidefinite relaxation (SDR) is a powerful approach to solve
nonconvex optimization problems involving rank condition.
However its performance becomes unacceptable for certain
cases. In this paper, a nonconvex equivalent formulation with-
out the rank condition is presented for the broadcast beam-
forming problem. This new formulation is exploited to ob-
tain an alternating optimization method which is shown to
converge to the local optimum rank one solution. Proposed
method opens up new possibilities in different applications.
Simulations show that the new method is very effective and
can attain global optimum especially when the number of
users is low.

Index Terms— Transmit beamforming, multicast beam-
forming, semidefinite relaxation, convex optimization

1. INTRODUCTION

In this paper, the problem of broadcasting common infor-
mation to geographically spread users with an antenna array
is considered. This problem is typically observed in com-
munications [1], [2], [3], and radar [4]. The traditional ap-
proach is to transmit the signal isotropically. As a more effi-
cient approach, single group multicast beamforming exploits
the channel state information (CSI) to generate simultaneous
beams for users. Multicast beamforming is now a part of en-
hanced multimedia broadcast multicast service (EMBMS) of
the long term evolution (LTE) standard [5].

The optimization problem for multicast beamforming is
nonconvex and NP hard in general. The single group mul-
ticast beamforming under minimum received signal-to-noise
ratio (SNR) constraint was initially studied in [2] and [6]. An
important variation to this problem is max-min fair beam-
forming which is also considered in the same works. In max-
min fair beamforming design, the goal is to maximize the
minimum received SNR over all users. Although this prob-
lem is NP hard, a near-optimal solution is usually found by
semidefinite relaxation [1], [2], [6], [7]. In these approaches,
nonconvex rank constraint is dropped and the problem is
solved using convex optimization. Unfortunately SDR does
not guarantee rank one solution in general [1]. When the rank
constraint is not satisfied, randomization is used to obtain a

better solution [2]. However there are some cases where ran-
domization does not work well, especially when the number
of users is large.

In this paper, rank conditioned nonconvex optimization
problem is converted to an equivalent form. This equivalent
form does not include the rank condition and it is nonconvex
due to the bilinear cost maximization. This new problem is
solved using alternating maximization [8], [9]. Iterations are
used to obtain a solution in the neighborhood of the SDR with
rank > 1 solution. It is shown that the proposed method, al-
ternating maximization algorithm, (AMA), is guaranteed to
converge to a local optimum if it is not the optimum. Sim-
ulations show that the proposed algorithm converges to the
upper bound when the number of users is small in which case
global optimum is obtained. In general, the proposed method
is very effective in comparison to the alternatives including
randomization [2].

2. SYSTEM MODEL

Consider a base station equipped with M transmit antennas
to transmit a common signal to N receivers, each having a
single antenna. Assume that the antennas are identical. The
transmitted signal can be written as,

x(t) = s(t)w (1)

where s(t) is the source signal and w is the M × 1 complex
beamformer weight vector. The received signal at the kth re-
ceiver is given as,

yk(t) = hHk x(t) + nk(t) k = 1, . . . N (2)

where hk is the M × 1 complex channel vector for the kth

receiver and nk is additive noise uncorrelated with the source
signal. Noise variance is σ2

k. Signal-to-noise ratio (SNR) for
the kth receiver is,

SNRk =
σ2
s |wHhk|2

σ2
k

(3)

where σ2
s is the source signal variance. σ2

s = 1 is selected
without loss of generality throughout the paper.



In “max-min” transmit beamforming, beamforming
weight vector, w, is chosen to maximize the minimum trans-
mitted power to any user. Considering Ptot as the total power,
max-min problem can be written as follows,

max
w∈CM

t

s.t. wHRkw ≥ tγkσ2
k, k = 1, ..., N

wHw = Ptot

(4)

where γk is the power proportion for the kth target and Rk =
E{hkhHk } is the correlation matrix of the channel vector. Let
us define W = wwH . The above problem can be written as,

max
W∈CM×M

t

s.t. T r{RkW} ≥ tγkσ2
k, k = 1, ..., N

Tr{W} = Ptot

W � 0

rank(W) = 1

(5)

This problem can be solved by convex optimization with
semidefinite relaxation [1], [2] where the rank condition
is dropped. Let us denote the solution found by semidefi-
nite relaxation as Ŵ and the principal eigenvector of Ŵ as
ŵ = P(Ŵ). If the solution matrix Ŵ has rank one then
ŵŵH = Ŵ and ŵ is the optimum beamforming weight
vector. If the rank of Ŵ is greater than one, then rando-
mization should be used. In SDR, rank one solution is not
guaranteed, and it may return unacceptable solutions in cer-
tain problems such as (5). In this paper, an alternative and
effective approach is presented for the solution of (5).

3. EQUIVALENT PROBLEM

Semidefinite relaxation is an effective approach which has
found widespread applications in a variety of fields. The ma-
jor limitation of semidefinite relaxation is the absence of the
rank one condition leading to suboptimal solutions in general.
In this paper, the original problem in (5) with rank condition is
converted into an equivalent form which admits more flexible
and manageable solutions. In order to obtain this equivalent
form, the following theorem is used.

Theorem 1: For M × M Hermitian symmetric, posi-
tive semidefinite matrices W1 and W2, Tr{W1W2} is
upper bounded by Tr{W1}Tr{W2}, i.e. Tr{W1W2} ≤
Tr{W1}Tr{W2}. This upper bound is reached if and only
if W1 and W2 are rank one matrices and W2 = αW1

where α is a positive scalar.
Proof: For the proof of the Theorem 1, the following

lemma is used.
Lemma 1 ( [10], page 176): Let A ∈ Cn×p, B ∈ Cp×m

be given and q = min{n, p,m}. The ordered singular val-
ues of A, B and AB can be written as, σ1(A) ≥ ... ≥

σmin{n,p}(A) ≥ 0, σ1(B) ≥ ... ≥ σmin{p,m}(B) ≥ 0, and
σ1(AB) ≥ ... ≥ σmin{n,m}(AB) ≥ 0, respectively. Then,

k∑
i=1

σi(AB) ≤
k∑
i=1

σi(A)σi(B), k = 1, 2, ..., q. (6)

Since W1 and W2 are M × M Hermitian symmetric po-
sitive semidefinite matrices, their singular values are equal
to their eigenvalues. Let λ1(W1) ≥ ... ≥ λM (W1) ≥ 0,
λ1(W2) ≥ ... ≥ λM (W2) ≥ 0, and λ1(W1W2) ≥ ... ≥
λM (W1W2) ≥ 0 be the ordered eigenvalues of W1, W2

and W1W2 respectively. Then,

Tr{W1W2} =
M∑
i=1

λi(W1W2) ≤
M∑
i=1

λi(W1)λi(W2)

(7)

≤
M∑
i=1

λi(W1)

M∑
i=1

λi(W2) = Tr{W1}Tr{W2} (8)

Note that
∑M
i=1

λi(W1)λi(W2) = Tr{W1}Tr{W2} if∑M
i=1

∑M
p=1,p6=i λi(W1)λp(W2) = 0. This means that W1

and W2 have only one nonzero eigenvalue. Hence, they are
rank one matrices. Therefore W1 = λ1(W1)u1u1

H and
W2 = λ1(W2)u2u2

H can be written where u1 and u2 are
unit norm vectors. In this case,

Tr{W1W2} = λ1(W1)λ1(W2)|u1
Hu2|2 (9)

Tr{W1W2} = λ1(W1)λ1(W2) only when u1 = u2e
jγ .

In this case W2 = λ1(W2)
λ1(W1)

W1 and hence the theorem is
proved.

In the following part, rank condition is to be embedded
into the optimization problem.

Corollary 1: For two Hermitian symmetric, positive semi-
definite matrices W1 and W2, the condition in (10) implies
rank one matrices, i.e., W2 = λ1(W2)

λ1(W1)
W1.

Tr{W1}Tr{W2} − Tr{W1W2} ≤ 0 (10)

Theorem 2: The optimum solution of the following opti-
mization problem in (11) and (5) are the same, namely W?

1 =
W?

2 = W? where W? is the optimum solution of (5):

max
W1,W2∈CM×M

t1 + t2

s.t. T r{RkW1} ≥ t1γkσ2
k, k = 1, ..., N

Tr{RkW2} ≥ t2γkσ2
k, k = 1, ..., N (11)

Tr{W1} = Tr{W2} = Ptot

W1 � 0,W2 � 0

P 2
tot − Tr{W1W2} ≤ 0

Proof: W?
1 and W?

2 are rank one matrices due to P 2
tot −

Tr{W1W2} ≤ 0 which is the condition in (10). Hence



W?
1 = W?

2 since λ1(W?
1) = λ1(W

?
2) = Ptot by Corollary

1. Since W?
1 and W?

2 independently solve the same problem,
W?

1 = W?
2 = W?.

The only nonconvex constraint in (11) is P 2
tot

− Tr{W1W2} ≤ 0. Fortunately this constraint can be
moved into the objective function using exact penalty ap-
proach [11], [12], [13]. This modification does not change the
optimum solution of the problem. In the following theorem,
the equivalency of the new form and (11) are established.

Theorem 3: The problem in (11) is equivalent to the
problem in (12) for µ > µ0 with µ0 being a finite positive
value in the sense that both problems have the same optimum
solution. Furthermore any local maximum of the problem in
(12) is also a local maximum of the problem in (11).

max
W1,W2∈CM×M

t1 + t2 − µmax(0, P 2
tot − Tr{W1W2})

s.t. T r{RkW1} ≥ t1γkσ2
k, k = 1, ..., N

Tr{RkW2} ≥ t2γkσ2
k, k = 1, ..., N (12)

Tr{W1} = Tr{W2} = Ptot

W1 � 0,W2 � 0

Proof: Constraints in (11) are all continuous functions.
The feasible sets of (11) and (12) are both closed and bounded
and hence they are compact due to the finite dimensional
space [14]. Therefore max(0, P 2

tot − Tr{W1W2}) corre-
sponds to an exact penalty function [12], [13]. As a con-
sequence of the definition of exact penalty function [13],
Theorem 3 becomes a valid statement.

Note that max(0, P 2
tot − Tr{W1W2}) =

P 2
tot − Tr{W1W2}, and (12) can be expressed as,

max
W1,W2∈CM×M

t1 + t2 + µTr{W1W2}

s.t. T r{RkW1} ≥ t1γkσ2
k, k = 1, ..., N

Tr{RkW2} ≥ t2γkσ2
k, k = 1, ..., N (13)

Tr{W1} = Tr{W2} = Ptot

W1 � 0,W2 � 0

Alternating maximization can be used to solve the problem in
(13) [8], [9]. At the iteration k, with the fixed Wk−1

1 , we can
obtain a new Wk

2 to maximize the objective function while
satisfying the SNR conditions. Then we alternate the fixed
variable and update Wk

1 while fixing Wk
2 . This alternating

optimization is continued until convergence. The following
lemma describes the convergence property of this algorithm.

Lemma 2: The problem in (13) converges when the alter-
nating maximization is used.

Proof: Consider the problem in (13) with Wk−1
1 fixed

and W2 as variable. This problem is convex and the optimum
solution W?

2 = Wk
2 is found. Let f(W1,W2) be the cost

function in (13). Since at each iteration the optimum solution
can be found, the sequence {f(Wk

1 ,W
k
2)} increases, i.e.,

f(Wk
1 ,W

k
2) ≥ f(Wk−1

1 ,Wk
2) ≥ f(Wk−1

1 ,Wk−1
2 ) (14)

In addition, f(Wk
1 ,W

k
2) is upper bounded by some finite

value, i.e.,

f(Wk
1 ,W

k
2) = tk1 + tk2 + µTr{Wk

1W
k
2}

≤ max
k

Tr{RkW
k
1}+max

k
Tr{RkW

k
2}+

µTr{Wk
1}Tr{Wk

2}
≤ max

k
Tr{Rk}Tr{Wk

1}+max
k

Tr{Rk}Tr{Wk
2}+

µTr{Wk
1}Tr{Wk

2}
= 2Ptotmax

k
Tr{Rk}+ µP 2

tot (15)

Since the sequence {f(Wk
1 ,W

k
2)} is increasing and upper

bounded by 2Ptotmaxk Tr{Rk}+ µP 2
tot, the sequence

{f(Wk
1 ,W

k
2)} converges to someB ≤ 2Ptotmaxk Tr{Rk}

+ µP 2
tot [9].

4. ALTERNATING MAXIMIZATION ALGORITHM

In the previous parts, the problems in (5) and (13) are shown
to be equivalent in the sense that they have the same optimum
solutions. Furthermore, it is shown that (13) can be solved
with alternating maximization. The convergence of this ap-
proach is guaranteed. However, there is no guarantee that op-
timum solution is achieved after the convergence. Neverthe-
less the solution is much better than the alternatives including
the semidefinite relaxation [1] and randomization [2]. The
steps for AMA can be presented as follows,

Alternating Maximization Algorithm (AMA)

Let λmax(W) be the maximum eigenvalue of the matrix W.
Initialization: k = 0,
Set a proper µ and W0

1 = Ŵ where Ŵ is the solution of (5)
with semidefinite relaxation. Solve the problem in (13) for
W0

2.
Iterations: k = k + 1
1) Solve (13) for Wk

1 while fixing W2 as Wk−1
2 . If

rank(Wk
1) = 1 go to step 6.

2) If λmax(Wk
1) ≥ λmax(W

k−1
2 ) + β (improved solution),

where β is a proper positive threshold value (Ex: Ptot/100),
keep the value of µ same. Otherwise, increase µ (Ex: µ →
2µ)
3) Solve (13) for Wk

2 while fixing W1 as Wk
1 . If rank(Wk

2)
= 1, go to step 6.
4) If λmax(Wk

2) ≥ λmax(W
k
1) + β, keep the value of the µ

same. Otherwise, increase µ.
5) Check the convergence (‖Wk

2 −Wk−1
2 ‖F ≤ ε where ε is

a proper threshold value). If AMA is converged go to step 6
else go to step 1.
End:
6) Take the beamformer weight vector as the principal eigen-
vector of the matrix Wk

i (where i = 1 or 2 depending on
termination).



AMA searches the rank one solution in the neighborhood
of the solution found by the semidefinite relaxation at the ini-
tial step of the algorithm. This process does not guarantee to
find the global optimum solution. However, the performance
of AMA is significantly better than the alternative solutions
in general. In fact, for small number of users, there is almost
zero gap between the solution found by semidefinite relaxa-
tion which returns rank > 1 and the AMA. This shows that
for such problems, AMA finds the optimum solution.

Convergence to a local optimum solution is guaranteed
throughout the iterations. Since the iteration steps are with
small increments, the global optimum is found as long as it is
in the neighborhood of the result returned by the SDR in the
initial step.

5. SIMULATION RESULTS

In this part, proposed method, AMA, is evaluated by com-
paring its performance with SDR-U which is the SDR so-
lution with rank>1, SDR with principal eigenvector, SDR-
P, and SDR with randomization, SDR-Rand. For SDR-U,
“t = min{SNRk

γk
}” value after semidefinite relaxation in (5)

is given. In this case, solution, W, has usually rank > 1.
Note that SDR-U result is presented only to give a loose upper
bound. This bound may not be achieved for rank=1 solutions
in general. SDR-P is the case where the principal eigenvec-
tor for the SDR-U solution is used and the value of “t” is
plotted. SDR-Rand uses the best solution of the three rando-
mization methods with 30NM trials each, as described in [2]
after SDR-P.

Proposed method, AMA, is implemented using convex
programming solver CVX [15]. Both far field line-of-sight
and Rayleigh fading transmit channels are considered. There
are M = 16 antennas and total power is set as Ptot = 10W .
The threshold parameter is selected as β = 0.1. The power
proportion γk takes values from {1, 2, 3, 4} set equally likely
for the users. Simulation results are presented for 100 inde-
pendent trials for different channel realizations. It should be
noted that rank=1 solution is obtained in all of the experi-
ments described in this section. The SNR values are given in
linear scale.

In Fig. 1, a uniform circular transmit array (UCA) is used
for N = 12 users. SDR-U stands for the upper bound that
can be achieved for ”t”. AMA is very close to this bound
and has the same value with the bound in many cases. SDR-
Rand cannot reach to the bound in general. The performance
of SDR-P is unacceptable in general. This figure shows that
AMA finds the global optimum in general.

In Fig. 2, a similar setup with Fig. 1 is used and only the
number of users is changed, i.e.,N = 32. In this figure, AMA
has the best performance with a large gap between SDR-P and
SDR-Rand. As N is increased, SDR-U may result high rank
(Ex: rank=4) and AMA cannot get very close to the SDR-U
result but its performance is very good in comparison.

In Fig. 3, channel realizations are obtained from identi-
cally distributed Rayleigh fading model. The “t” values in
Fig. 3 are slightly lower than Fig. 2 due to model difference.
The loss in SDR-Rand is large in comparison to AMA.

In Fig.4, average iteration number is presented for diffe-
rent number of users and antenna elements by averaging 100
different channel realizations. Results of both Rayleigh fa-
ding channel and line of sight (LOS) channel with uniform
circular array are shown in the figure. Average iteration num-
ber in Rayleigh channel case is larger than LOS channel. As
the number of users increases, the problem becomes more
complex and the number of iterations for convergence in-
creases.
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Fig. 1. Optimization parameter “t” (minimum SNR) for
AMA, SDR-U, SDR-P and SDR-Rand for 100 different
far field channel realizations with M=16 element UCA and
N=12.
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Fig. 2. Optimization parameter “t” (minimum SNR) for
AMA, SDR-U, SDR-P and SDR-Rand for 100 different
far field channel realizations with M=16 element UCA and
N=32.
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Fig. 3. Optimization parameter “t” (minimum SNR) for
AMA, SDR-U, SDR-P and SDR-Rand for 100 different
Rayleigh channel realizations with M=16 and N=32.
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Fig. 4. Average iteration number for different number of users
and antennas.

6. CONCLUSION

In this paper, an alternative to semidefinite relaxation for rank
conditioned problems is considered. An equivalent noncon-
vex formulation is obtained which does not include the rank
condition. This new form of the optimization problem is
solved for single group multicast beamforming application
using alternating maximization. It is shown that the proposed
solution is guaranteed to converge and returns very good
solutions compared to the alternative methods.
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