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ABSTRACT
This paper studies feature extraction within the context of au-
tomatic speech segmentation at phonetic level. Current state-
of-the-art solutions widely use cepstral features as a front-end
for HMM based frameworks. Although the automatic seg-
mentation results have reached the inter-annotator agreement,
within a tolerance equal or higher than 20ms, the same is not
true when a lower tolerance is considered. We propose a new
set of cepstral features that derive from the time-frequency re-
assigned spectrogram and offer a sharper representation of the
speech signal in the cepstral domain. The features are evalu-
ated through a series of forced alignment experiments which
demonstrate a better performance, compared to the traditional
MFCC features, in aligning phone boundaries within a small
distance from their true position.

Index Terms— feature extraction, reassigned spectro-
gram, phonetic segmentation, forced alignment, HMM

1. INTRODUCTION

The accurate segmentation and labelling of speech into phone
units is useful for diverse purposes, as for example the ini-
tialization of speech recognizers, the creation of databases for
concatenative text-to-speech systems, the health related as-
sessment of speech, and the evaluation of the performance of
speech recognition tasks. The most accurate method of creat-
ing time-aligned phonetic labels is to employ an expert human
annotator. This approach however, is expensive and requires
an excessive amount of time. Moreover, the variability in
human annotations results into subjective and unreproducible
segmentation choices. Therefore, the design and implemen-
tation of automatic methods for phone-level segmentation of
speech is of great interest.

Many different approaches have been exploited for ad-
dressing the task of automatic alignment, with most being
based on either Hidden Markov Model (HMM), or Dynamic
Time Warping (DTW). The latter primarily uses fixed tem-
plates, while in general HMM based approaches are charac-
terised by more flexibility and provide superior results [1].
Therefore, HMM is the dominant technique in automatic seg-

mentation of speech. In such systems, the acoustic signal and
the phone transcriptions are used as input to a phone HMM
based forced alignment system. In other words, the Viterbi
algorithm is used for a constrained search of the phoneme
boundaries inside the utterance, given the corresponding pho-
netic transcription. The segmentation results are evaluated
as the percentage of correctly aligned boundaries, within dif-
ferent thresholds of tolerance. Because in continuous speech
boundary positioning is an inherently subjective task, the goal
of automatic phone alignment is often described as achieving
the agreement between different human annotators. Within a
tolerance of 20ms, the automatic methods have reached the
93.49% of inter-annotator agreement that has been reported
in [1] for TIMIT dataset [2]. Nevertheless, when a lower tol-
erance is considered, the performance of automatic methods
is still far from the corresponding inter-annotator agreement,
that has been reported as high as 63% within 5ms for a dataset
of German sentences [3].

A reason that contributes to the loss of accuracy with
lower tolerances is related to the features used in the forced
alignment systems. Cepstral features, for example Mel-
frequency cepstral coefficients (MFCC) [4] and Perceptual
Linear Predictive coefficients (PLP) [5], are currently the
most popular choice [6, 7]. Both sets of features are obtained
from the power spectrum as computed by the windowed
speech signal. However, the application of the Short Time
Fourier Transform (STFT) can be considered as a source of
uncertainty as it suffers from a smearing effect and causes
an unavoidable trade-off between temporal and spectral res-
olution. We therefore propose the use of the reassigned
spectrogram [8, 9] in order to obtain a set of acoustic fea-
tures which improve the accuracy of boundary positioning
in forced alignment systems. The reassigned spectrogram
provides an estimation of the instantaneous frequency of the
input signal and, therefore, a more accurate representation of
the time-frequency distribution of the energy.

The remainder of this paper is organized as follows. In
section 2, we discuss in detail the most common acoustic
features used in forced alignment systems. The method of
time-frequency reassignment, and its incorporation in the cal-
culation of a new set of acoustic features, are introduced in



section 3. In section 4, we describe the experimental activi-
ties, while the conclusions and future steps are presented in
section 5.

2. MFCC AND PLP FEATURES

As mentioned above, cepstrum based features, namely MFCC
and PLP, are the most popular choices as a front-end for
speech segmentation systems, that employ an HMM based
architecture. PLP cepstral features have been reported to be
more robust in cases where a mismatch between the train-
ing and the testing material exists, while MFCC features
have been found to perform better under clean and match
conditions. There have been attempts to combine the most
interesting characteristics of the two sets of features [10, 11],
showing that the computation method of both can be further
improved.

The block diagrams of the extraction steps for the two sets
of acoustic features are presented in Figure 1(a). As depicted
there, the processing is highly comparable. Both sets derive
from the application of the STFT on the acoustic signal and
the computation of the magnitude of each frequency bin. This
results in the complete loss of the phase information, as well
as in a possible loss of accuracy in the power spectrum estima-
tion. In the case of MFCC, a pre-emphasis filtering is applied
on the time-domain. In the case of PLP, the pre-emphasis
takes place in the spectrum domain, according to an equal-
loudness function. The subsequent frequency band analysis
comprises the application of a Mel filter-bank in the MFCC
computation and a Bark filter-bank in the PLP computation.
Both scales, Mel and Bark, are perceptually inspired and in
practice the differences between the resulting filter-banks are
negligible. Higher frequencies components are emphasised
and more filters are allocated for the lower frequencies. Con-
cerning the intensity law (PLP) and the logarithmic compres-
sion (MFCC), both stages model the non-linear relation be-
tween the intensity of the sound and its perceived quality. The
result of the two approaches has again a very similar effect.

It is therefore reasonable to state that a source of discrep-
ancy between the two analyses is the method selected to map
the spectrum into the cepstrum domain. MFCC are computed
with the application of an inverse discrete cosine transform
(IDCT) on the log Mel filter-bank output, a step that aims to
the decorrelation of the features. In PLP analysis the audi-
tory warped filter-bank output is further processed with in-
verse Discrete Fourier Transform, a step that yields the auto-
correlation function. The values of the autocorrelation func-
tion are needed to compute the parameters of an LP model,
which approximates the spectrum of the signal. Finally, cep-
stral coefficients are obtained from the LP model parameters,
in a recursive fashion.

In both PLP and MFCC analysis, it is common practice
to extend the feature vectors with their first and second order
derivatives, in order encode their dynamic properties. This is

Fig. 1: The steps of extracting (a) PLP (left) and MFCC (right)
features and (b) the proposed features. The dashed arrows
indicate the analogous processing steps.

usually performed with the application of a simple regression
formula, that considers a certain number of neighbouring val-
ues. Finally, the features are very often normalized, for exam-
ple employing cepstral mean normalization (CMN), variance
normalization or band-pass filtering.

3. TIME-FREQUENCY REASSIGNED CEPSTRAL
COEFFICIENTS

The time-frequency reassignment method, introduced in [8],
remaps the spectral energy of each time-frequency point to a
point closer to the actual region of support of a signal analysed
with the STFT. When applied to speech signals the reassigned
spectrogram offers a better localization of spectral features,
such as the formant positions and the structure of the harmon-
ics [12]. In spite of these interesting properties, the method of
reassignment has been rarely used for speech processing [13].
Clear advantages were observed when applied in other fields,
as for instance in music processing [14], though with a differ-
ent perspective and implementation than the one proposed in
this work. Here, we exploit the use of the reassigned spectro-
gram in the calculation of a set of time-frequency reassigned
cepstral coefficients (TFRCC) which are adequate as a front-
end to an HMM based speech segmentation system.

3.1. The time-frequency reassignment

The mathematical formulation of time-frequency reassign-
ment is as follows. We denote X(t, ω) the continuous time



STFT of a signal, presented in the polar form as in

X(t, ω) = M(t, ω)ejφ(t,ω) , (1)

where M(t, ω) is the magnitude and φ(t, ω) is the phase of
X(t, ω), defined as a function of continuous time t and an-
gular frequency ω. The method of reassignment assigns to
(t, ω) a new time-frequency coordinate that better reflects the
distribution of energy in the analysed signal. The reassigned
time-frequency coordinates (t̂, ω̂) may be calculated from the
derivatives of the spectral phase as follows

t̂(t, ω) = −ϑφ(t, ω)
ϑω

(2)

ω̂(t, ω) = ω +
ϑφ(t, ω)
ϑt

. (3)

3.2. The feature extraction

The method for the extraction of the TFRCC features, as de-
picted in Figure 1(b), is performed in the following steps:
1. A pre-emphasis filter is applied to the speech signal.

2. The discrete STFT is calculated in order to obtain a com-
plex spectrum. In the following,Xh(t, ω) denotes the dis-
crete STFT of a signal, calculated with the use of an anal-
ysis window h(n), that is shifted in time with a certain
step.

3. In the case of the discrete STFT, the reassignment oper-
ations in (2) and (3) cannot be directly computed. Nev-
ertheless, in [15] it is shown that the reassignment op-
erations can be performed with the use of two auxiliary
windows, as follows

t̂ = t−R

{
XT h(t, ω).X∗h(t, ω)
|Xh(t, ω)|2

}
(4)

ω̂ = ω + I

{
XDh(t, ω).X∗h(t, ω)
|Xh(t, ω)|2

}
, (5)

where XT h is the discrete STFT computed using an anal-
ysis window, which is a time weighted version of h(n),
and XDh is the discrete STFT computed using an anal-
ysis window, which is a frequency weighted version of
h(n). In practice, (4) and (5) reallocate spectral energy
from the coordinate (t, ω) to the coordinate (t̂, ω̂) which
can be formulated as

X(t̂, ω̂) = |Xh(t, ω)|2 , (6)

with X(t̂, ω̂) defined in the continuous time-frequency
domain. As a result, the estimates of the spectral energy
distribution of the input speech signal are more precise.

4. The representation in (6), defined in the continuous time-
frequency domain, cannot be directly used in the sub-
sequent processing. In order to obtain a discrete ver-
sion of X(t̂, ω̂) in a new time-frequency domain, a bi-
dimensional window is applied. Since X(t̂, ω̂) is defined

only at the points where there is energy to reassign, this
new representation can be expressed as

Sw(m, k) =
∑
(t̂,ω̂)

wk(m− t̂, ω̂)X(t̂, ω̂) , (7)

where Sw(m, k) strongly depends on wk(t̂, ω̂), which is
a bi-dimensional window defined in the continuous time-
frequency domain, m denotes the generic time instant in
the new discrete time domain, and k denotes the index of
a frequency range. Different weighting schemes can be
exploited for the design of the window, which becomes
more evident when it is expressed as

wk(t̂, ω̂) = l(t̂)gk(ω̂) . (8)

In the above notation, l(t̂) can be viewed as a continu-
ous time window, that is shifted with a certain step, and
gk(ω̂) as a set of bandpass filters, for example a Mel-scale
filter-bank, as the one used in MFCC, but defined in the
continuous frequency space. The time resolution of the
new time domain is determined by the length and the ad-
vance step of the time window l(t̂), which should not be
confused with the length and the advance step of the win-
dow h(n) used for the calculation of the initial STFT. The
frequency resolution is determined by the total number of
filters in the filter-bank gk(ω̂).

5. The discrete Sw(m, k) is logarithmically compressed.
The output of this step is essentially equivalent to the
log mel-scale filter-bank output of MFCC, but it offers a
better localization of the energy distribution of the signal.

6. The resulting representation is mapped into the cepstrum
domain with the application of the IDCT, as typically
done with MFCC.

Finally, common techniques, such as the augmentation of the
vectors with time derivatives and the normalization of the cep-
strum coefficients, can be applied on the TFRCC features.

4. EXPERIMENTAL RESULTS

For the evaluation of the proposed features we performed a
set of speech segmentation experiments using forced align-
ment. The Hidden Markov Model Toolkit (HTK) was used to
build phone HMMs, for which the probability estimates of the
observations were modelled with Gaussian Mixture Models
(GMM). The system was trained on the training partition of
the TIMIT database (3696 read sentences, excluding the “sa”
files) and tested in the full testing partition (1344 read sen-
tences, excluding “sa” files). The complete set of 61 TIMIT
phonemes was mapped into a set of 48 phonemes and each
phonetic unit was represented by 4 states, as reported in [6].
The models were trained with the application of the Baum-
Welch algorithm, with a total of 6 iterations over the data.

As a baseline configuration we used MFCC features,
extracted with the following steps: (i) pre-emphasis of the
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Fig. 2: Percentage of correctly positioned boundaries (CPB)
for increasing advance step of a triangular time window of
length 20ms, given a tolerance of 5 and 20ms.

frames with a pre-emphasis coefficient α = 0.97, (ii) appli-
cation of a 20ms Hamming window, , (iii) computation of the
power spectrum with an analysis step size of 5ms, (iv) fre-
quency warping with a Mel-scale filter-bank comprising 32
filters, (v) conversion to the logarithmic domain, (vi) applica-
tion of the IDCT transform to obtain 12 cepstra coefficients
and (vii) liftering of the cepstra to obtain a more narrow range
of variances. CMN was applied and the log energy was added
to the feature vector.

TFRCC feature vectors were extracted with the same con-
figuration as above for (i) the calculation of the power spec-
trum of the acoustic signal, (ii) the pre-emphasis of the signal,
and (iii) the application of the IDCT. CMN was applied and
the log energy was added to the vector. For the design of the
bi-dimensional window in (8), the same Mel-scale filter-bank
as for MFCC was combined with an overlapping triangular
window. It is noted here that alternative filter-bank configu-
rations were explored and were found to have a similar effect
as in the traditional cepstral features. The shape of the time
window does not significantly affect the result. On the con-
trary, changes in the analysis step size result into more notable
fluctuations, as presented in Figure 2.

Comparative segmentation results are reported in Table 1.
For these experiments, the bi-dimensional window is created
with a triangular time window of length 20ms, advancing in
time with a step of 5ms. This, along with the 32-band filter-
bank, produces the same time-frequency grid as in the case of
the baseline MFCC configuration. The first two rows of Ta-
ble 1 correspond to log-power spectrum domain feature sets,
formed by the output of the Mel filter-bank in the case of
MFCC features and the bi-dimensional windowing in the case
of TFRCC features. The ability of the reassigned spectrogram
to offer a more detailed representation of the fine structure of
the time-frequency distribution of the acoustic signal is trans-
lated into a higher percentage of correctly aligned boundaries,
particularly regarding low tolerances.

Tolerance
5ms 10ms 15ms 20ms

Spectra
MFCC 36.22 64.63 78.42 84.43
TFRCC 46.88 69.88 79.10 84.12

Cepstra
MFCC 37.55 65.21 79.12 85.09
TFRCC 46.74 70.04 80.19 85.40

∆, ∆∆
MFCC 45.74 72.12 82.89 87.76
TFRCC 49.82 73.26 82.86 87.40

Table 1: Percentages of correctly positioned boundaries, for
different tolerances, using different feature sets.

The next two rows concern the results based on features
derived from the application of the IDCT. MFCC-based seg-
mentation presents improved results over all tolerance values.
On the other hand, the TFRCC features demonstrate a dif-
ferent behaviour. In fact, a slight decrease of performance
within 5ms indicates that the application of the IDCT is not
the optimal choice for this step. Nevertheless, the boundary
alignment improves when a tolerance higher than 10ms is re-
garded.

Finally, the last two rows of Table 1 are obtained by the
extension of the feature set with the first and second order
derivatives, considering a total of 3 and 7 frames, respectively.
Focusing on the strictest threshold of tolerance, we observe
that in the case of MFCC a relative improvement of 21.81%
is presented. The corresponding improvement for TFRCC is
6.52%. This is explained by the fact that the TFRCC fea-
tures are changing more rapidly than MFCC. Moreover, the
use of the same regression formula, which is optimized for
the MFCC features, fails to model the dynamic properties of
the TFRCC. Nevertheless, the TFRCC features perform bet-
ter, given a tolerance of 5 and 10ms.

It is also interesting to analyse the results with respect to
transitions between different phonetic classes. In Table 2, we
consider five phonetic classes: vowels, stops, nasals, frica-
tives and liquids. Both segmentation techniques demonstrate
certain limitations in locating the boundaries in transitions
such as vowel-to-vowel and liquid-to-vowel. This is expected
since no unique point can be defined as boundary in such
cases. In fact, such transitions in TIMIT database have been
annotated with heuristic rules [2] which are not addressed
in this experimental set-up. On the other hand, the TFRCC
feature set presents an important improvement in better de-
fined cases (36.5% relative improvement for any transition to
vowel, 26.6% for any transition to fricative and 70.84% for
any transition to liquid).

A final remark concerns the comparison of the results re-
ported above to segmentation results reported in the literature,
where results as high as 93.92% within a tolerance of 20ms
have been reported in [7] for the TIMIT dataset. The exper-
iments presented in this paper were designed to demonstrate
the behaviour of the proposed features and compare them with



vowel stop nasal fric liquid all

vowel
15.91 52.52 47.38 40.56 14.02 39.32
13.97 55.23 46.47 55.07 15.91 43.62

stop
42.82 42.18 29.54 37.06 29.21 39.73
63.37 53.74 52.95 40.99 64.83 56.23

nasal
31.53 33.95 20.00 38.08 28.41 32.90
51.57 34.02 17.50 44.31 27.84 42.49

fric
40.64 50.12 36.36 32.76 28.10 41.84
55.37 49.14 53.11 29.80 53.60 52.16

liquid
17.58 45.66 52.23 36.20 19.08 23.33
17.25 50.08 47.77 59.38 19.08 25.15

all
32.40 46.16 44.63 38.74 21.64 37.55
44.23 51.66 47.00 49.07 36.97 46.74

Table 2: Percentage of correctly positioned boundaries per
phonetic class within a tolerance of 5ms. For each transi-
tion pair, the first row corresponds to MFCC and the second
to TFRCC. The transitions for which MFCC provide more ac-
curate results (in bold) account for 24.7% of the testing mate-
rial.

MFCC. All the results can be improved, as in [7], with the use
of a more sophisticated HMM architecture, the use of context
dependent models and the application of boundaries correc-
tion methods, which will be addressed in our future work.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new set of features that can be
used as a front-end for phone segmentation, as well as for
speech recognition and other similar tasks. The proposed
features result from the time-frequency reassigned spectro-
gram of the speech signal. In the experimental activities, they
have been found to perform equally well compared with the
traditional MFCC features, as far as more relaxed tolerance
thresholds are concerned. On the other hand, they outper-
form MFCC features, with strict thresholds of tolerance. The
power of the proposed feature set lies in the ability of the
method of reassignment to offer a much sharper representa-
tion of the energy distribution of the speech signal. The exper-
iments also indicated that further improvements are possible
in the proposed analysis: in fact, both the application of the
IDCT and the extension of the features with time derivatives
do not yield an improvement as high as expected based on the
behaviour of the forced alignment with MFCC features.
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