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ABSTRACT
Head-related transfer functions (HRTFs) describe the acous-
tic filtering of incoming sounds by the human morphology.
We propose three algorithms for representing HRTFs in sub-
bands, i.e., as an analysis filterbank (FB) followed by a trans-
fer matrix and a synthesis FB. These algorithms can be com-
bined to achieve different design objectives. In the first al-
gorithm, the choice of FBs is fixed, and a sparse approxi-
mation procedure minimizes the complexity of the transfer
matrix associated to each HRTF. The other two algorithms
jointly optimize the FBs and transfer matrices. The first vari-
ant aims at minimizing the complexity of the transfer matri-
ces, while the second one does it for the FBs. Numerical ex-
periments show that the proposed methods offer significant
computational savings when compared with other available
approaches.

Index Terms— Head-related transfer functions, subband
signal processing, sparse approximation.

1. INTRODUCTION

Head-related transfer functions (HRTFs) describe the acous-
tic filtering of incoming sounds by the torso, head, and pinna
in terms of a linear-time-invariant system [1]. With a listener-
specific HRTF set, the listener is immersed into a virtual au-
ditory environment [2]. Rendering complex environments in
real time with multiple virtual sources and room reflections
is computationally demanding and raises the desire of an effi-
cient representation of HRTFs.

Efficient HRTF filtering can be achieved using pole-
zero (PZ) modeling [3], but this approach is inappropriate
for commutation of filters when processing moving sound
sources [4]. This limitation is avoided by using zero- or low-
delay fast convolution (ZDFC, LDFC) [5], which permits ac-
commodating a trade-off between efficiency and latency. It
was recently shown that a better trade-off can be achieved us-
ing the subband (SB) representation [6, 7]. In that approach,
an HRTF is represented as an analysis filterbank (FB) fol-
lowed by a transfer matrix called subband model (SBM) and
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a synthesis FB. Since the analysis and synthesis FBs are com-
mon to all HRTFs within a set, the synthesis FB needs to be
computed only once per audio output channel, i.e., ear signal,
and its complexity is minor. Further, each analysis FB needs
to be evaluated only once per audio input channel, i.e., virtual
source signal, regardless of the number of reflections.

In this study we propose three algorithms for efficient rep-
resentation of HRTFs in subbands. They aim at maximizing
computational efficiency while focusing on perceptually rele-
vant features. In particular, perceptual relevance is considered
in terms of non-linear frequency and amplitude scaling [8] as
well as phase sensitivity in humans [9]. The first algorithm
relies on fixed FBs and minimizes the complexity (i.e., the
number of non-zero entries) of the SBMs. The second method
minimizes the support of all the SBMs in an HRTF set. It
does so while including the FBs within the optimization pro-
cedure. This increases the optimization flexibility. The third
method jointly optimizes the FBs and component SBMs in
order to reduce the FB complexity. These three algorithms
can be combined depending on design goals.

The proposed algorithms have a common initialization
stage. This is based on the algorithm from [6, S5], which
was designed to minimize a linear amplitude error criterion,
and minimization of a logarithm criterion was achieved by re-
peated applications of it. As opposite, the algorithm proposed
here is directly designed to minimize a logarithm criterion,
and produces SBMs of significantly lower complexity.

Notation: Given a time sequence x(t), t ∈ Z, we use
x(ω), ω ∈ (−π, π] to denote its discrete-time Fourier trans-
form. Also, when it is clear from the context, we use x to
denote either x(t) or x(ω). The i-th entry of vector a is de-
noted by [a]i and the (i, j)-th entry of matrix A by [A]i,j .

2. SYSTEM APPROXIMATION USING SUBBANDS

The input/output relation of a linear system with frequency
response g(ω) is given by

y(ω) = g(ω)x(ω). (1)



The same system can be approximately implemented in the
subband domain as follows [6]:

ξ(ω) = ↓D {h(ω)x(ω)} (2)

ψ̂(ω) = S(ω)ξ(ω), (3)

ŷ(ω) = f∗(ω) ↑D
{
ψ̂(ω)

}
, (4)

where h(ω) = [h0(ω), · · · , hM−1(ω)]
T and f(ω) =

[f0(ω), · · · , fM−1(ω)]
T denote the analysis and synthesis fil-

ters, respectively, M denotes the number of subbands, ↓D {·}
denotes the downsampling operation with factor D ≤ M
(i.e., keeping one out of D samples), ↑D {·} denotes the up-
sampling operation of factor D (i.e., inserting D − 1 zero-
valued samples between every two samples), S(ω) denotes
the SBM, ξ(ω) and ψ̂(ω) denote the subband representa-
tion of the input x(ω) and the approximated output ŷ(ω), re-
spectively, and ∗ denotes transpose conjugation. We choose
hm(ω) = h

(
ω − 2πm−1

M

)
and fm(ω) = f

(
ω − 2πm−1

M

)
,

for some prototype finite impulse response filters h and f , of
tap size lh and lf , respectively. We call (2) the analysis stage
and (4) the synthesis stage.

From [6, S 3.1], it follows that

ŷ(t) =
∑
τ∈Z

ĝtmodD(τ)x(t− τ),

where the impulse responses ĝd, d = 0, · · · , D − 1, are

ĝd(tD + e− d) =
[
Ĝ(t)

]
d,e
, (5)

for all d, e = 0, · · · , D − 1 and

Ĝ(ω) = F∗(ω)S(ω)H(ω), (6)

with H(ω) and F(ω) being the polyphase representations [10]
of the analysis and synthesis FBs, respectively. Hence, the
scheme (2)-(4) behaves as the circular switch of D linear sys-
tems. It also has an unavoidable latency. If the prototypes h
and f are chosen to be anti-causal, as we do in this work, this
latency is given by

∆ = DδS + lh, (7)

δS is the maximum non-causality over all the entries of S(t).
Using [11], and assuming that M is a power of two, so

that an M -point FFT requires M log2M (real) multiplica-
tions [5], the implementation of the analysis FB requires

ΨFB(h) =
lh +M log2M

D
,

real multiplications per (fullband) sample. The same applies
to the synthesis FB, with lf replacing lh. Also, assuming that
the input signal x(t) is real valued, only half of the SBM S(t)
entries need to be computed. Then,

ΨSBM(S) =
# {S}
D

, (8)

where # {S} = ‖< {S}‖0+‖= {S}‖0 denotes the number of
non-zero entries of S(t), considering the real and imaginary
parts of complex entries as two different coefficients.

3. PROBLEM DESCRIPTION

Let g(l)(ω), l = 1, · · · , L, be a set of HRTFs. For each, l, we
want to approximate g(l) using (2)-(4). Suppose that M , D,
h and f are given, and that for each l = 1, · · · , L, we have
a SBM S(l). Let S =

{
S(1), · · · ,S(L)

}
and Ξ = {S, h, f}.

The error Υ(l) (Ξ) in approximating g(l) is given by

Υ(l) (Ξ) = κ

D−1∑
d=0

ˆ π

−π
w(ω)

∣∣∣log g(l)(ω)− log ĝ
(l)
d (ω)

∣∣∣2 dω,
with ĝ(l)

d (ω) being defined as in (5)-(6) but using S(l) in place
of S. Also, κ = 200/

(
πD log2 10

)
, and w(ω) is a frequency

weighting function used to measure the approximation error
in a non-linear frequency scale, e.g., Bark, equivalent rectan-
gular bandwidth (ERB), etc. We would then like to solve

Ξopt = arg min
Ξ

Ψ (Ξ)

subject to Υ(l)(Ξ) ≤ ε,∀l ∈ {1, · · · , L} ,
∆(l)(Ξ) ≤ τ,∀l ∈ {1, · · · , L} ,

(9)

where ∆(l)(Ξ) denotes the latency (7) of the subband imple-
mentation of g(l), and

Ψ(Ξ) =

L∑
l=1

ΨSBM

(
S(l)
)

+ aΨFB(h) + bΨFB(f), (10)

is a measure of the complexity of the whole scheme, with
a, b ≥ 0 being constants chosen to weight the complexities of
the analysis and synthesis FB, respectively.

The functions Ψ(Ξ) and Υ(l)(Ξ), l = 1, · · · , L, are nei-
ther convex, nor quasi-convex. Hence, (9) cannot be solved
using standard optimization algorithms, and convergence to
the global optimal solution cannot be guaranteed. We pro-
pose below approximate algorithms for solving (9).

4. DESIGN WITH FIXED FILTERBANKS

Let M and D be given. In view of (8), for each l = 1, · · · , L,
we need to minimize the number #

{
S(l)
}

of non-zero en-
tries of S(l). To this end, we choose the FB prototypes h
and f so that the entries of each S(l) are concentrated on the
main diagonal. Following [6, S 4.5], we design h using a
root raised cosine window with inflection angular frequency
ω0 = π/M and roll-off factor β = M/D− 1, whose impulse
response is symmetrically truncated so that energy outside the



band [−π/D, π/D] is below certain prescribed threshold ϑ,
and we put f = h. With this choice of FBs, the last two terms
in (10) are fixed. Hence, the design of each SBM can be ad-
dressed separately. Thus, for each l = 1, · · · , L, we need to
solve

Ŝ(l) = arg min
S(l)

#
{
S(l)
}

subject to Υ(l) (Ξ) ≤ ε, ∆(l) (Ξ) ≤ τ.
(11)

We propose below a method for solving (11). The method
is formed by two stages. The first is an initialization stage,
consisting in an iterative algorithm in which the number of
non-zero entries of S(l) is increased at each iteration, until the
constraint Υ(l) (Ξ) ≤ ε is met. This is done while respecting
the constraint ∆(l) (Ξ) ≤ τ at each iteration (obviously, the
iterations will never end if both constraints are such that the
problem is unfeasible). This algorithm chooses the support
of S(l) in a greedy fashion, i.e., choosing at each iteration the
‘best’ next entry. However, there is no guarantee that the set
of chosen entries is the best one. Hence, we use the obtained
SBM S(l) to initialize the algorithm of the second stage. This
solves a sequence of constrained optimization problems, aim-
ing to reduce the support obtained from the first-stage algo-
rithm. To simplify the notation, we drop the superindex (l) in
the remainder of this section.

4.1. Initialization algorithm

This algorithm proceeds in iterations. Let Sk denote the SBM
at the k-th iteration, and Ĝk and ĝd,k be defined as in (5)-
(6) by using Sk in place of S. For each entry [Sk]m,n (t) of
the impulse response of Sk, we consider its real and imag-
inary components separately. Hence, we define a subband
index as a quartet (m,n, t, ρ), where ρ ∈ {<,=} indicates
if the index corresponds to the real or the imaginary com-
ponent of [Sk]m,n (t). For each 1 ≤ m ≤ M , let m =
mod (M + 1−m,M) + 1. Then, for each (m,n, t, ρ), we
define its conjugate index by (m,n, t, ρ) = (m,n, t, ρ). We
say that an index i is self-conjugate if i = ī. To each sub-
band index i = (m,n, t, ρ), we associate a real coefficient
θk,i = ρ

{
[Sk(t)]m,n

}
. Since the impulse response g(t) is

real valued, the coefficient θī associated the the conjugate of
index i is given by

θk,̄i =

{
θk,i, ρ = <,
−θk,i, ρ = =.

(12)

Hence, we only consider indexes i = (m,n, t, ρ) with 1 ≤
m,n ≤ M/2 + 1 or 2 ≤ m ≤ M/2, and such that ρ = <
whenever i is self-conjugate. We call such indexes, essen-
tial subband indexes. We use E to denote the set of essen-
tial subband indexes, S = {i ∈ E : i = ī} to denote the
set of self-conjugate indexes in E , and Sc to denote its com-
plement in E . We also use R = {(m,n, t, ρ) ∈ E : ρ = <}

and I = {(m,n, t, ρ) ∈ E : ρ = =} to denote the set of real
and imaginary indexes in E , respectively. Notice that, in view
of (12), S ⊆ R.

Let Hk = supp (Sk) denote the support of Sk, i.e., the
set of essential subband indexes (m,n, t, ρ) ∈ E such that
ρ
{

[S(t)]m,n

}
6= 0. Notice that, in view of (7), the delay

constraint in (11) requires that δs ≤ τ−lh
D .

We can now introduce the initialization algorithm:
Initialization algorithm: The inputs of the algorithm are M ,
D, τ , ε and ϑ. Design h = f using a root raised cosine
window with ω0 = π/M and β = M/D − 1, truncated so
that the energy outside the band [−π/D, π/D] is below ϑ.
Put S0 = 0. Then, for each k ∈ N:
1. Pick a new subband index (mk, nk, tk, ρk) ∈ S , with

tk ≥ τ−lh
D , and add it to the current support, i.e., Hk =

Hk−1 ∪ {(mk, nk, tk, ρk)} (see below how);

2. Use a gradient search method [12] to solve

Sk = arg min
supp(S)=Hk

Υ (S, h, f) , (13)

3. Stop if Υ (Sk, h, f) ≤ ε.
The output of the algorithm is Sk.

We explain below how to carry out Step 1 in the initial-
ization algorithm. Following an argument similar to the one
in [6, S5], we obtain

Υ (Ξ) =
1

D

∥∥∥C̃k

∥∥∥2

W
, (14)

where, for all d, e = 1, · · · , D,
[
C̃k(t)

]
d,e

= c̃d,k(tD +

e − d), c̃d,k(ω) = log g(ω) − log ĝd,k(ω), W (ω) is the
polyphase representation of w (ω), ‖X‖2W = 〈X,X〉W and
〈X,Y〉W = 1

2π

´ π
−π Tr {X(ω)W(ω)Y?(ω)} dω. Now, at it-

eration k, we have

C̃k(ω) =
(
G(ω)− Ĝk(ω)

)
Zk(ω),

Zk(ω) =
(
G(ω)− Ĝk(ω)

)−1

C̃k(ω), (15)

where G (ω) denotes the polyphase representation [10] of
g (ω). By approximating Zk with Zk−1, we can write (14)
in a linear least-squares form as follows

Υlls (Sk) =
1

D
‖G− F∗SkH‖2Rk−1

. (16)

with Rk(ω) = Zk(ω)W(ω)Z∗k(ω).
To choose the next subband index, in view of (12), we

associate to each index i = (µ, ν, λ, ρ) ∈ E a SBM Ui(ω),
defined by

Ui(t) =


Eµ,ν,λ(t), i ∈ S,
Eµ,ν,λ(t) + Eµ̄,ν̄,λ(t), i ∈ Sc ∩R,
j (Eµ,ν,λ(t)−Eµ̄,ν̄,λ(t)) , i ∈ Sc ∩ I,



where the impulse response [Eµ,ν,λ(t)]m,n = 1 if (µ, ν, λ) =

(m,n, t) and 0 otherwise. Also, for each i ∈ E , we de-
fine Vi(ω) = F∗(ω)Ui(ω)H(ω). Then, in view of (16),
we choose the index ik ∈ E for which the correlation
(weighted by Rk−1) between Vi(ω) and the current residual
G(ω)− Ĝk−1(ω) is maximized, i.e.,

ik = arg max
i∈E

‖Vi‖−1
Rk−1

∣∣∣∣〈G− Ĝk−1,Vi

〉
Rk−1

∣∣∣∣ .(17)

4.2. Main algorithm

From the initialization algorithm we obtain a SBM S together
with its support set H = supp (S). The algorithm described
in this section aims to reduce the size # {S} ofH. We have

# {S} =
∑

(m,n,t,ρ)∈H

χ
(
ρ
{

[S(t)]m,n

})
,

where χ (z) = 0 if z = 0 and 1 otherwise. The difficulty
in minimizing #

{
S(l)
}

arises as χ is constant almost every-
where. To go around this, following [13], we choose α > 0,
and replace χ by

rα (z) = 1− e−
z2

2α2 ,

which is a smooth function for each α > 0, and converges in
a point-wise manner to χ. This gives the following algorithm:
Algorithm 1: The inputs of the algorithm are M , D, ε, τ , ϑ
and a threshold 0 < ς < 1. Run the initialization algorithm
to obtain h, f , S and H. Put S0 = S and α0 = ‖S‖∞ ,

maxm,n,t,ρ

∣∣∣ρ{[S]m,n (t)
}∣∣∣. Then, for each k ∈ N:

1. Use the barrier method [14, S11.3], initialized using
Sk−1, to solve

Sk = arg min
supp(S)=H

Rα (S)

subject to Υ (S, h, f) ≤ ε
, (18)

with Rα (S) =
∑

(m,n,t,ρ)∈H rα

(
ρ
{

[S(t)]m,n

})
.

2. Put αk = 0.5αk−1 and stop if αk < 0.2ς ‖Sk−1‖∞.
Upon termination, make zero all entries [Sk]m,n (t) for which∣∣∣[Sk]m,n (t)

∣∣∣ ≤ ς ‖Sk‖∞. The output is Sk.

5. COMPLETE DESIGN

Algorithm 1 yields a set of SBMs S =
[
S(1), · · · ,S(L)

]
, to-

gether with its supports H =
{
H(1), · · · ,H(L)

}
for given

choices of M , D, h and f . In this section we propose
two algorithms for optimizing the complete parameter set
Ξ = [S, h, f ]. Both use Algorithm 1 as initialization.

The first algorithm aims to reduce the supports H, while
keeping the supports Ih = {0, · · · , lh − 1} and If =

{0, · · · , lf − 1}, of h(t) and f(t), unchanged. This algorithm
is similar to Algorithm 1, with the difference in that, instead
of S(l), it jointly tunes Ξ.
Algorithm 2: Put S0 = S, h0 = h, f0 = f and α0 =
maxl∈{1,··· ,L}

∥∥S(l)
∥∥
∞. Choose 0 < ς < 1. For each k ∈ N:

1. Use the barrier method [14, S11.4], initialized with
[Sk−1, hk−1, fk−1], to solve

Ξk = arg min
supp(Ξ)={H,Ih,If}

∑L
l=1R

(l)
αk−1

(
S(l)
)
,

subject to Υ(l) (Ξ) ≤ ε,∀l, ‖h‖2 ≤ 1, ‖f‖2 ≤ 1,

with R(l)
α (S) =

∑
(m,n,t,ρ)∈H(l) rα

(
ρ
{[

S(l)(t)
]
m,n

})
.

2. Put αk = 0.5αk−1 and stop if αk <

0.2ς minl∈{1,··· ,L}

∥∥∥S(l)
k

∥∥∥
∞

.

Upon termination, for each l = 1, · · · , L, make zero all en-

tries
[
S

(l)
k

]
m,n

(t) for which
∣∣∣∣[S(l)

k

]
m,n

(t)

∣∣∣∣ ≤ ς
∥∥∥S(l)

k

∥∥∥
∞

.

The output of the algorithm is Ξk = [Sk, hk, fk].
The second algorithm aims to reduce the supports Ih and

If , while keepingH unmodified. The basic idea is to sequen-
tially shrink lh and lf until the problem becomes unfeasible.
Algorithm 3: Put S0 = S, h0 = h, f0 = f , lh,0 = lh,
lf,0 = lf and α0 = maxl∈{1,··· ,L}

∥∥S(l)
∥∥
∞. For each k ∈ N:

1. Put lh,k = lh,k−1 − 1 and lf,k = lf,k−1 − 1.

2. If Υ(l) (Ξk) > ε, for some l, use the barrier method [14,
S11.4], initialized with Ξ = [Sk−1, hk−1, fk−1] and ζ >
maxl=1,··· ,L Υ(l) (Ξk)− ε, to solve

[Ξk, ζk] = arg min
Ξ,ζ

ζ + (‖h‖2 − 1)
2

+ (‖f‖2 − 1)
2
,

subject to Υ(l) (Ξ) ≤ ε+ ζ,∀l.

3. If ζk > 0, stop.
The output is Ξk−1 = [Sk−1, hk−1, fk−1].

6. NUMERICAL EXPERIMENTS

For the evaluation we approximate the far-field
HRTFs of subject NH92, from the ARI database at
http://www.kfs.oeaw.ac.at/hrtf. Each HRTF
has a length of 192 samples at a sampling rate of 36 kHz,
and its broadband delay is removed before processing. The
design goal is to solve (9) with ε = 9 (as suggested by
preliminary results from subjective localization experiments)
and τ = 2 ms. As in [6], the frequency weighting w(ω)
corresponds to the Bark frequency scale.

In the first experiment we consider the HRTFs for 34 di-
rections, sparsely sampling the sphere. Each HRTF was ap-
proximated by four algorithms. For the LDFC algorithm [5],
we truncated each impulse response such that ε < 9, leading
to a maximum length of 159 samples over the whole HRTF
set. To achieve the desired latency, we use two segments of 64



ZDFC LDFC SB-IRW Alg. 1
Analysis/synthesis 57.30 43.44 11 11
Filtering (average) 43.78 11.85 7.252 3.321

Latency 0 1.78 1.67 1.67

Table 1. Complexity (real multiplications per sample) and la-
tency (milliseconds) for the whole HRTF set.
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Fig. 1. An HRTF approximation example.

samples, followed by an extra segment of 128 samples. For
its zero-delay (ZDFC) version we used two segments of 32
samples, the first of which is implemented using convolution,
followed by another two segments of 64 and 128 samples,
respectively. The remaining two methods were the iterative
re-weighting subband (SB-IRW) design [6, S5] and the pro-
posed Algorithm 1. For these methods we used M = 32,
D = 20 and lh = lf = 60 (which gives ϑ ' −30dB). The
results are shown in Table 1. It shows complexity of the anal-
ysis and synthesis stages (for the LDFC and ZDFC methods,
these are the FFT and IFFT operations), the filtering stage (for
the SB methods, this is the average complexity of the SBMs)
and the latency. We see that the SB-based methods signifi-
cantly reduce the complexity of the analysis/synthesis stages,
and Algorithm 1 has a clear advantage over the SB-IRW algo-
rithm in the filtering stage. Figure 1 shows an example where
the D responses of the SB implementation are averaged.

In the second experiment, to show the different perfor-
mances of Algorithms 1, 2, and 3, we approximate HRTFs for
virtual speakers from the 5.1-surround sound setup [15] (lo-
cated at elevation 0◦ and azimuth 0◦, ±30◦ and ±110◦). The
comparison in Table 2 shows that Algorithm 3 reduces the la-
tency of Algorithm 1. Also, the combination of Algorithm 2
followed by Algorithm 3 reduces the filtering complexity at
the expense of less latency reduction.

Alg. 1 Alg. 3 Alg. 2+3
Analysis/synthesis 11 10 10.6
Filtering (average) 3.39 3.39 2.91

Latency 1.67 1.11 1.44

Table 2. Comparison of different subband algorithms.
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