


GAERS has 16 channels (Fig. 1) bilaterally recorded from

motor cortex, somatosensory cortex and ventroposteromedial

thalamus. The sampling rate is fs = 5kHz. The monopolar

montage is considered. The 50Hz is removed by a 5-order

notch Butterworth filter with 3dB cut-off frequencies equal to

48Hz and 52Hz. For details of iEEG recordings, refer to [9].

2.2. Blind Source Separation (BSS) [7]

Let’s assume Xk ∈ R
N×T , the matrix of the recorded sig-

nals from N iEEG channels and for T samples of window k,

in the range of [tk − T + 1, . . . , tk], tk = t0 + k(1 − V )T .

V is the overlap ratio between two consecutive sliding win-

dows. We assume that each recorded signal (rows of Xk),

x
(k)⊺
i = [xi(tk−T+1), . . . , xi(tk)] is the linear instantaneous

(based on quasi-static approximation of Maxwell’s law) su-

perposition of different electric sources (epileptic and back-

ground), s
(k)⊺
j = [sj(tk − T + 1), . . . , sj(tk)], j = 1, . . . , J ,

i = 1, . . . , N , k = 0, . . . ,K − 1. J and K are the number of

sources and the number of windows, respectively. Thus, this

model is as follows:

Xk = AkSk (1)

where Sk ∈ R
J×T and Ak ∈ R

N×J are defined as:

Sk = [s
(k)⊺
1 , . . . , s

(k)⊺
J ]⊺

Ak = [ak
1 , . . . , akJ ], akj = [ak1j , . . . , a

k
Nj ]

⊺
(2)

where aij indicates the contribution of the jth source into

the ith observation signal. ⊺ indicates transpose for vec-

tors/matrices. The BSS problem consists in estimating the

sources Ŝ
k
= BkXk from observations, Xk. This can be done

using independent component analysis (ICA) through estima-

tion of the N×J invertible mixing matrix Ak (Bk = (Ak)−1)

such that Ŝ
k

components are as statistically independent as

possible. We assumed (and verified by mixing matrix) that

each iEEG recorded signal can be the sum of epileptic and

background sources, that can be assumed to be independent.

Using ICA, BSS problem is impossible to solve for Gaussian

and temporally iid sources [10]. Therefore, we need some

imposed diversity between sources by either assuming that

(a) sources are non-Gaussian (possibly iid), or (b) sources

are non-iid (colored or non-stationary) and possibly Gaus-

sian [7]. In assumption (a), higher order statistics [10] are

required and a possible ICA method is the JADE algorithm

using fourth-order cumulants [11]. In assumption (b), second

order statistics are sufficient and separation can be achieved

by joint diagonalization algorithms like SOBI by taking ad-

vantage of the temporal structure of sources [7].

2.3. Map of dynamic behavior

Seizure signals have important harmonic oscillations, thus

they are non-i.i.d (temporally colored with different spec-

tra), therefore SOBI algorithm is an appropriate method.

The other diversity that can be used is the fact that seizure

and background signals have non-Gaussian and Gaussian

distributions, respectively, as can be checked by using a

Kolmogorov-Smirnov test [12] on 16 seizures and back-

ground periods. The result of the test indicates that seizure

signals are non-Gaussian with long tails while background

signals are mainly Gaussian. By considering this diversity,

one can use JADE algorithm where sources are estimated

by approximately jointly diagonalizing a set of fourth-order

cumulant matrices [11, 7].

In the following, we explain the idea of MDB and how

to build it. In the proposed method, there are two steps. In

the first step, we use source separation for each temporal slid-

ing window. We assume instantaneous linear mixtures of the

sources, i.e. we try to isolate the sources that are electrically

propagated from different locations. For each window, we se-

lect the most powerful sources. Once the important sources

for all sliding windows are estimated, in a second step we

would like to know 1) if the sources related to each window

are in relation through a neuronal network and 2) if the source

signals are changing from one window to another. In this step,

we take into account delays induced by neuronal connections.

These typical time delays can be around 10ms. To answer

these questions, we use cross-correlation functions of differ-

ent sources (for different values of time delay, τ ), to construct

MDB.

For the first step of this dynamic study, we consider over-

lapping sliding windows, k = 0, . . . ,K − 1 with window

length T and overlap ratio V . For each window, we use ei-

ther SOBI, or JADE algorithm to estimate the J < N most

important sources. To do the dimension reduction from N

to J , we use PCA [7]. Once the K sets of sources, Ŝ
k
,

k = 0, . . . ,K − 1, are estimated then in the second step, we

quantitatively measure the similarity between them. To calcu-

late this similarity, we can consider different measures, based

on normalized covariance or mutual information. Since the

two measures provide similar MDB, we decided to use the

simplest measure based on normalized covariances between

source signals as a function of time delay, τ . The maximum of

this function over τ is considered as the measure of similarity.

More precisely, the maximum of absolute value of covariance

between each signal pair j1 and j2 (j1, j2 = 1, . . . , J) from

windows k1 and k2 (k1, k2 = 0, . . . ,K − 1) are calculated as

follows:

Ej1j2(k1, k2) = maxτ | ĉov(ŝ
(k1)⊺
j1,τ

, ŝ
(k2)⊺
j2

) | (3)

where ŝ
(k1)⊺
j1,τ

= [ŝj1(tk1
−T+1+τ), . . . , ŝj1(tk1

+τ)]. ŝ
(k2)⊺
j2

corresponds to τ = 0. Samples go beyond window-borders

are omitted from shifted signal. The values obtained in (3) are

normalized by division with the standard deviations:

Cj1j2(k1, k2) = Ej1j2(k1, k2)/(σŝ
k1

j1

σ
ŝ
k2

j2

) (4)

where σŝkj
is the standard deviation of signal ŝ

(k)⊺
j . For each





C̄(k1, k2) 6= 0: the relevant sources have similar temporal

regime, i.e. they become stationary. We call the time at which

the source signals become similar, the time of generalization

of seizure: tg (dark red bars on the MDBs of Fig. 2).

To see the repeatability of this result across different

seizures, we calculate the averaged MDB as follows. Let’s

indicate the matrix C for each of Ns seizures as Cn, n =
1, . . . , Ns. We estimate the average of Cn matrices giving

Cm = (1/Ns)
∑Ns

n=1 Cn. By thresholding this average ma-

trix, we estimate the averaged MDB, C̄m. In the bottom

image of Fig. 2, the averaged MDB for the same rat data

for Ns = 13 seizures is demonstrated. It can be seen that

a similar result as for individual MDB is obtained, i.e. the

sources become similar and stationary after a latency. Similar

averaged MDBs are obtained for the other 3 rat datasets.

To detect tg automatically, we calculate the sum of

columns of matrix C̄ giving b(t), t = 1, . . . , J × K. b(t)
has an ‘S’ shape which has small (near zero) values for back-

ground and increases for seizure. Using a sigmoid model for

b(t), tg is detected as the time at which b(t) values reach to

the middle of the increasing slope. We study the intra and

inter variability of the latency (∆t = tg − tonset) between

different rats. As an example, ∆t values for 13 seizures for

the same rat data are overlaid on the bottom MDB in Fig.

2. The mean ± standard deviation of ∆t values over 13

seizures, for rat dataset 1-4 are respectively 0.85s ± 0.3s,

1.05s ± 0.17s, 0.72s ± 0.2s, and 0.66s ± 0.16s. The mean

± standard deviation of ∆t over 52 seizures (4 rats × 13

seizures) is 0.82s± 0.26s.

We computed MDBs for different number of components

(J = 2 to 5) and as we got similar results, for simplicity, we

kept J = 3. We also used PCA to estimate the number of

components for each window k by keeping 95% of energy ra-

tio. We again got similar results. However, in this case, since

J may vary for each window k, the correspondence between

size of squares in C̄ matrix and time scale is not linear which

makes the interpretation more complicated. We also checked

that sources provided by PCA are different from sources pro-

vided by JADE.

We also used other measures for comparing quantitatively

the estimated sources. We tested the normalized maximum

mutual information over τ between the estimated source sig-

nals [13] for taking into account the probable non-linearities,

and we obtain similar MDB. We tested different values of

T and V . The window length is considered long enough

(T = 0.5s) to see at least a couple of biphasic signals (SWDs)

and to provide significant statistic results. We can increase V
from 80% to higher values which may increase the temporal

resolution, however this is not critical for the general shape of

MDB.

Spatial map: Up to here, we explained about the change

of temporal relevant signals and we saw that in the beginning

of seizure the source signals are typical, but non-stationary,

while at tg , their temporal regime becomes very stationary.

Now, one can wonder what happens spatially, i.e. if these

sources have important contributions into some particular

iEEG channels. To study about this issue, we analyzed the

columns of matrix Ak (2). For each window k, the total

power of the J = 3 relevant sources in iEEG channel i can

be calculated as pi(k) =
∑J

j=1(a
k
ij)

2 since JADE provides

normalized power sources. Let’s call the representation of

pi(k) values for i = 1, . . . , N as the spatial map related to

time window k. In Fig. 3, 3 spatial maps related to time

windows ending at respectively tonset plus 0.1s, 0.6s and

1.1s are shown. The parameters are the same as the former

results for MDB. The dots show the channel locations. The

blue scale represents the values of pi(k): the more blue, the

more important power of the sources in iEEG channels. It

can be seen that in map 1, where the related time window

ends at tonset + 0.1s, the temporal sources have important

contributions in right somatosensory channels. The power

values of map 1 are lower than spatial maps 2-3 since its

related window is not entirely in seizure. After propagation

of SWDs, the contribution of sources can change from one

window to another one which can be seen in the example

spatial maps shown in Fig. 3.

We also calculated the angle between each column pair of

the different time windows. These angles are about 20 − 30
degrees which shows that there is not a spatially stable origin

of the epileptic sources, conversely, a rapid change of most

active areas in many possible locations in the whole brain.
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Fig. 3. Three spatial maps 1-3 related to 3 time windows end-

ing at tonset plus 0.1s, 0.6s and 1.1s, respectively. The dots

represent the channel locations. The blue scale represents

pi(k) values.

4. DISCUSSION AND CONCLUSION

In this work, we wonder if the brain behavior remains the

same or if it changes during a given seizure in a rat model

of absence epilepsy (GAERS). We use source separation

methods to estimate the most relevant temporal sources from

iEEG recordings for sliding windows within a given seizure.

We measure the temporal similarity between the sources

extracted on different windows to examine the change of

behavior giving a map of dynamic behavior (MDB). Based

on MDB, we observe that at the beginning of the seizure,

high amplitude oscillations appear but with strong tem-

poral/frequential fluctuations, while after a latency (about

0.5s − 1.5s after onset), the temporal sources (related to

epileptic oscillations) become stationary. This change of



brain behavior cannot be seen visually from iEEG recordings

(Fig. 1). This can show the importance of the analysis com-

pared to visual inspection of recordings. The time at which

the sources start to become stationary (tg) is studied for its

inter and intra variability between four rat datasets. Over 52

seizures (4 rats × 13 seizures), mean ± standard deviation of

∆t = tg − tonset is 0.82s ± 0.26s. About 1s after seizure

onset we often see on iEEG recordings the involvement of the

thalamus. Since this deep structure is connected with wide

areas of the cortex, it could probably exert a “synchronizing”

action on cortical channels, and as a consequence might re-

duce the source variability across time. This may explain the

latency after onset before generalization of seizure.

In this paper, our focus was mostly on temporal effects of

source signals. For the spatial point of view, for each time

window, we compute the total power of all relevant tempo-

ral sources in each iEEG channel. The location of the most

active channels evolves over time, affecting preferentially so-

matosensory cortex of both hemispheres but also many neigh-

boring regions without special regularity. It seems that this is

related to the typicity of absence epilepsy which invades the

whole brain without very accurate localization except for on-

set. For completing this analysis, we also computed the dy-

namic functional connectivity using differential connectivity

graph [14] for focusing on spatial effects. This study is out

of the scope of this paper, but preliminary results confirm that

the seizure activity starts from right/left somatosensory cortex

and then propagates rapidly to other regions.

Further investigations include in depth interpretation with

neuroscientists of periodicities and inhomogeneities of the

MDB and study of changes in the spatial localization of

sources during the seizures. From methodological point of

view, the proposed method is the first attempt on dynamical

EEG analysis for absence epileptic seizure using blind source

separation, and it requires more advances in this perspective.
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