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ABSTRACT

We propose to analyze consequences of input data quality on

3D HDR image generation. Input data are images from dif-

ferent viewpoints and different exposures. The ease and pre-

cision of 3D HDR images merging depends on how input data

are created or acquired. We study the benefits and drawbacks

of using an inbuilt multiview camera against a single camera

with a simulation on computer generated images. This work

builds on a previously published 3D HDR method based on

disparity to guide HDR matching. In this paper, we outline

the errors that occur when too little precaution is taken, com-

ing on the one hand from poor pixel quality and on the other

hand from poor geometrical setup.

Index Terms— 3D HDR videos, camera noises

1. INTRODUCTION

For the last two decades researchers have been interested in

improving the dynamic range of images acquired from tra-

ditional cameras to reproduce all the intensity shades visible

by human eyes. In 1995, Mann and Picard [1] first introduce

High Dynamic Range (HDR) images, in opposition to tra-

ditional images called Low Dynamic Range (LDR) images.

Their method to obtain these images consists of a weighted

average of differently exposed images acquired from the same

viewpoint. The book of Reinhard et al. [2] gives a detailed

overview of existing approaches. In parallel, 3D was democ-

ratized by the Avatar movie (2009) allowing immersion and

a better feeling of the action with the acquisition or synthe-

sis of sequences from at least two viewpoints to recreate the

binocular disparity used by human visual system.

The combination of 3D and HDR requires new sets of

methods for their acquisition, manipulation, rendering and vi-

sualization. In Bonnard et al. [3], we proposed a method to

acquire 3D HDR images which proved to be very sensitive to

input data. The study presented here highlights input conse-

quences on the final results. A test bed considered perfect is

generated virtually for several viewpoints aligned along the

axis supporting their optical centers. These data are altered

to represent imprecisions and inaccuracies that we observed

during our acquisitions, that were both geometric and colori-

metric. We correlate these results with data acquired from

two different devices: an 8-objective video camera [4] (Oc-

toCam) and a rail-mounted digital camera. In this paper, 3D

HDR images correspond to the fusion of 8 images acquired

from several viewpoints and for which visualization can be

done on autostereoscopic screens (without glasses).

The case of 3D HDR reconstruction from input coming

from more than two stereoscopic views brings out considera-

tions already made for 2D HDR reconstruction, but for which

solutions are more difficult to find. The HDR process requires

to register pixels in terms of position and color. Altered po-

sition or color affect the registration process and impact on

the quality of the HDR reconstructed values. For the gen-

eration of 2D HDR images, solutions were proposed both

for alignment and color correction. Alignment is easier for

rigid motion and linear transformations (translation and rota-

tion) which find satisfactory solutions with Median Thresh-

old Bitmap [5] or Normalized Cross Correlation [6]. Camera

response curve functions have helped to linearize the color

data [7] but can be estimated mostly for a unique viewpoint

from one camera and a static scene. In our case, parallax oc-

curs and these types of algorithms are not sufficient. Even

optical flow [8] is not adequate because apparent motion of

foreground objects can be large. Other methods were also

proposed for stereo and multiview HDR generation, the in-

terested readers may refer to [9] for explanations on each of

them.

One solution in our case is to apply multiview camera cal-

ibration methods [10]. A chessboard can be used for geomet-

ric calibration and a color checker for color calibration. How-

ever, this requires a preprocessing step. In our experiments,

we observed that systematic calibration before any acquisi-

tion helped but is not precise enough for HDR reconstruction

when run on eight views.

In this paper, we study the geometric and colorimetric im-

pact of approximations of the input data in the 3D HDR re-

construction. The goal is to identify factors that are difficult

to compensate during calibration and registration in order to

guide the design of new algorithms that will apply corrections

during the HDR reconstruction phase. While analysis is done

only on 3D HDR images produced with our approach, we be-

lieve that the conclusions of our study could benefit to the use

of any other method. To guide our evaluation, we focus on

parts of HDR images when errors are visually detectable and



we compute the associated PSNR (Peak Signal to Noise Ra-

tio). Others methods can also be used for the evaluation such

as the HDR-VDP-2 [11] but the PSNR is enough discriminat-

ing.

This article is organized as follows. Section 2 presents the

pipeline used to generate 3D HDR images. Section 3 details

precautions which must be taken on the geometrical setup and

impacts on the 3D HDR process and section 4 is dedicated to

the pixel color. In section 5 we present errors produced when

the quality of input images is affected by both the geometrical

and the color differences before concluding in section 6.

2. 3D HDR: MATERIALS & METHODS

In this section, we briefly present the 3D HDR method [3]

used in this work.

Acquisition: The acquisition step is done by using a mul-

tiview camera [12] called OctoCam, equipped with eight hor-

izontally aligned and synchronized objectives designed to de-

liver 3D content for auto-stereoscopic displays. This camera

is based on a simplified epipolar geometry that permits strong

assumptions on 3D stereovision algorithms [4] and horizon-

tally align epipolar lines. Each of its sensors allows the acqui-

sition of 10 bits per color channel. A neutral density filter is

fixed on each objective; consequently, a different percentage

of the light reaches the sensor for each view, hence acquired

images represent different exposures. In this paper, we only

use computer generated images as input. We reproduce the

geometry of the camera to render eight images from aligned

viewpoints of a synthetic scene using the POV-Ray ray-tracer.

Registration: The next step consists of the application

of a pixel matching algorithm [13] to aggregate in a unique

group called match, pixels which represent the same 3D point

in the scene. The search for the corresponding pixels is only

done on one line with the same ordinate thanks to the sim-

plified epipolar geometry induced by the OctoCam, which in-

creases the pixel matching algorithm speed.

HDR reconstruction: We adapted the Debevec and Ma-

lik’s HDR method [14] for the 3D case. The HDR computa-

tion is not done on pixels occupying position in each image

but on those belonging to the same match. Thereby all these

pixels obtain the same HDR value called radiance:

∀m ∈ M, ∀ p = (i, j, k) ∈ m,

Lc(p) =

∑
q∈m

w(Zc(q))Zc(q)/∆t(q)
∑

q∈m
w(Zc(q))

(1)

where m is a match, p = (i, j, k) is a pixel of coordinates
(i, j) in image k, Zc(p) is the value of the pixel p belonging
to the matchm on color channel c ∈ {R,G,B},∆t(p) is the
exposure time of the image k in which the pixel p is and w is

the weighting function.

We present in Fig. 1 a PSNR based comparison between

two specific parts of the whole image (from view 0). In Fig. 2,

(a) PSNR =

32.93 dB

(b) PSNR =

30.19 dB

Fig. 1. Parts of the best tone mapped HDR images obtained

with the 3D HDR process on synthetic images.

(a) View 0 (3) (b) View 1 (0) (c) View 2 (−3) (d) View 3 (1)

Fig. 3. Representation of a part of the misaligned synthetic

images taken into account in the 3D HDR process. Here only

four of the eight pixels belonging to a match representing the

same 3D point in the scene are shown for better visibility.

Digits in brackets corresponds to the displacement along ver-

tical axis based on values found with the OctoCam.

are shown four of the eight synthetic images generated by

POV-Ray ray-tracer (first line) and tone mapped HDR results

obtained with the described 3D HDR process (second line).

This example shows the best results our method [3] currently

generates. Reference HDR images that represent ground truth

in this paper are generated separately for each view using

four simulated exposures per view and Debevec and Malik’s

method [14].

3. GEOMETRICAL SETUP

Most HDR reconstruction methods assume that input images

are perfectly aligned so that each position (i, j) corresponds
to the same 3D point. In our camera setup objectives are

aligned so that only i is looked for during registration: a same
3D point lays at the same j coordinate in all images. Like

for any HDR method, misalignment impacts on the 3D HDR

process. The use of technology implies imperfect alignment

even if a geometrical calibration is done to correct it. Fig. 3

shows an example of vertical misalignment. In that example,

we focus on the Monoyer in the synthetic images to demon-

strate misalignment. Pixels at the intersection of vertical and

horizontal grey lines (added for better visibility) correspond

to pixels belonging to the same match. In that case pixels

detected as corresponding by our registration method are er-

roneous. In order to guide future correcting algorithms, we

tested different cases and tried to estimate the impact of mis-

alignment, varying the amount of vertical misalignment and

the position of the image in which it occurs.

To begin with, we tested a misalignment of 1, 3 or 7 ver-



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. First four images of a set of eight images by line. First line: input images with different exposures on each view. Second

line : tone mapped HDR images generated with the 3D HDR process on each view.

(a) 1 (21.53

dB)

(b) 3 (15.93

dB)

(c) 7 (13.75

dB)

(d) 3 - Two

views (15.33

dB)

(e) 1 (26.20

dB)

(f) 3 (21.93

dB)

(g) 7 (18.73

dB)

(h) 3 -

Two views

(22.68 dB)

Fig. 4. Parts of tone mapped HDR images obtained on view

0 with different misalignment amplitudes in one view (a)-(c)

and (e)-(g) and in two views (d) and (h). Digital values corre-

spond to the shift amplitude.

tical pixels on one view to understand how the amplitude of

vertical misalignment can affect the process. Images gener-

ated on view 0 when view 2 is misaligned are shown in Fig. 4.

We can notice that one misaligned image with a shift of 1

pixel is acceptable. However, a 3-pixel shift already shows

errors. We can see a deterioration of the results when increas-

ing the misalignment and it gets slightly worse when on two

views (Fig. 4(d) and (h)).

4. PIXEL QUALITY

In this section, we study noise types associated to sensors

that can modify color pixel quality. They can be classified

into two categories: temporal noises and spatially varying

noises. Those involved in the first category change over time.

This category contains the Photon Shot Noise (PSN), the

Dark Current Shot Noise (DCSN) and the Readout Noise

also called Reset Noise. Spatially varying noises affect pix-

els according to their position in the acquired image. Photo

Response Non Uniformity (PRNU) and Dark Current Non

Uniformity (DCNU) also called Fixed Pattern Noise are in

this category. The interested reader can find more details

in [2, 7].

We focus on the estimation of the Noise Level Function

that allows to determine the temporal noise that occurred in

the OctoCam and the pixel color quality that is involved in

the consistency between the color of pixels acquired on each

sensor.

4.1. Noise Level Function

In this paper we use the Noise Level Function proposed by

Liu et al. [15] to evaluate temporal noise due to the sensor

itself. We acquired one set of 100 images in the same condi-

tions (no change in acquisition parameters and in luminosity

around the acquired scene). We estimated it on each sensor of

the OctoCam and on each color channel separately because

sensors are supposed to be identical but their actual response

to noises is different.

In Fig. 5, we represent the standard deviation as a function

of pixel values. The black curve corresponds to the regression

obtained from the point cloud. This regression is an estimate

of the researched Noise Level Function of the OctoCam. By

using this function, we are able to generate noisy pixel values.

To show the temporal effect of the Noise Level Function,

we computed 25 sets of 8 modified images and generated 3D

HDR images for each set. We compared the 25 HDR images

obtained on each view with the HDR reference by computing

PSNR. Results on each view are presented in Table 1. Surpris-

ingly, our measure shows that the Noise Level Function mea-

sured on our OctoCam has no impact in our 3D HDR process

(PSNR > 25 dB). This can be understandable because the

most affected pixels are over-exposed and are not taken into
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Fig. 5. Noise Level Function estimated using Liu et al. [15]

on images acquired on view 4 of the OctoCam. Results are

similar on the other views.

View 0 1 2 3

PSNR (dB) 26.7481 29.0453 31.9739 33.8696

View 4 5 6 7

PSNR (dB) 34.0809 32.7847 29.4415 27.0031

Table 1. PSNR values for estimating the impact of temporal

noise on the 3D DHR process.

account in the HDR computation by the use of the weighting

function. We have established that a unit to each value of the

regression curve corresponds to a threshold not-to-exceed to

avoid errors in the 3D HDR process.

4.2. Color quality

To simulate color inconsistency between sensors, we added

a uniform noise with different amplitudes and then we com-

puted 3D HDR images and compared results with references.

As presented in Fig. 6, even if the amplitude of the color

is only of one color unit (for example a pixel of value 48 for

a maximum of 1023 can have a value of 47, 48 or 49 in other

images), we show that it is enough to produce visible errors

on HDR images generated by the 3D HDR process. In this

example, all the views are affected by these color differences.

We note that different parts of the image are affected by col-

orimetric noise and results cannot be acceptable.

We tested the color inconsistency on only one of the eight

views with an amplitude of one color unit to determine if the

number of affected views can alter the results. We changed

the position of the modified image in the 8-view sequence to

see if it has or not an impact. We notice that only one view

affected by color difference of only one color unit is enough

to visualize errors independently of its position even if they

are smaller than those produced when all views are affected.

(a) One view

(32.91 dB)

(b) All views

(32.88 dB)

(c) One

view (22.31

dB)

(d) All

views

(17.24 dB)

Fig. 6. HDR image generated on view 0 after the addition of a

uniform random noise of amplitude 1.

(a) PSNR =

17.10 dB

(b) PSNR =

17.05 dB

(c) PSNR =

23.27 dB

(d) PSNR =

20.72 dB

Fig. 7. Parts of tone mapped HDR images obtained with the

combination of misalignment and color pixel inconsistency

on different views (left) and on the same view (right).

5. GEOMETRY & COLOR

In this part we show the impact when there are errors in both

geometry and color. We used conclusions obtained in the two

previous parts to orient tests. In section 3, we demonstrated

that a misalignment of three pixels shift is not acceptable and

in section 4, we showed that a small error (one unit) in color

consistency gives bad results. We evaluate in this part if the

combination of these two smallest errors can be brought to-

gether without decreasing the quality of output results.

We constructed images with a misalignment of three pix-

els and we added the smallest color inconsistency. We moved

the erroneous image on the eight views to see if it changed

the impact on the 3D HDR image generation. We also tested

the impact when one image is affected by misalignment and

another one by color inconsistency. As presented in Fig. 7,

the addition of these two sources of errors in one image gives

poorer results than when on individual sources.



6. CONCLUSION

In this article, we presented impacts of the input data qual-

ity on 3D HDR reconstruction process first by studying mis-

alignment, secondly by treating pixel quality with the Noise

Level Function and inconsistency, and finally by using a com-

bination of both noises. We notice that a three pixel shift af-

fects the process and the smallest error in color consistency

creates wrong results. The combination of errors both in ge-

ometry and color causes an increase in defects in the images

produced that cannot be accepted. One solution would be to

work on new calibration procedures to reduce misalignment

and noises when working with 8-view cameras. Another so-

lution is to use the results of the study to guide the HDR re-

construction and take into account the data inaccuracy when

combining input values (new weight function). It is this di-

rection that we planned to work on the near future.
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