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ABSTRACT

This paper presents a novel approach for room reconstruc-
tion using unknown sound signals generated in different lo-
cations of the environment. The approach is very general,
that is fully uncalibrated, i.e. the locations of microphones,
sound events and room reflectors are not known a priori. We
show that, even if this problem implies a highly non-linear
cost function, it is still possible to provide a solution close
to the global minimum. Synthetic experiments show the pro-
posed optimization framework can achieve reasonable results
even in the presence of signal noise.

Index Terms— Room reconstruction, microphone cali-
bration, source localization, simulated annealing

1. INTRODUCTION

Sensing the shape of a room is a problem that has attracted
increasing attention from the research community. In part
this is due to the complexity of the task in which the posi-
tion of the walls has to be found by analysing only a set of
acoustic events registered by microphones. These being, in
the most blind scenario, unknown signals generated from un-
known sources with an arbitrary position. The other practi-
cal aspect is that room reconstruction is an enabling technol-
ogy for ubiquitous localisation with the simple use of micro-
phones such as the ones in mobile phones and other consumer
products. Such attractiveness has although clashed against the
intrinsic complexity of the problem. Current solutions often
need custom hardware requirements or even constraints that
make the applicability of each method subject to the specific
setup or to limiting assumptions.

On the contrary, we are dealing with the general optimiza-
tion problem for room reconstruction where each source gen-
erates an unknown sound (not impulsive) which is acquired
by a set of microphones deployed randomly in an unknown
indoor area. The solution of such optimization is the 3D
metric positions of the microphones, sources and the room
wall positions. Crucially, the cost function derived from this
problem is non-convex, highly non-linear and with several
ambiguous solutions. Moreover, the problem in such gen-
eral form requires the solution of four different problems that

formally have been treated separately: dereverberation, mi-
crophone positions estimation, source localization and room
calibration. For this reason, most of the approaches were de-
vised to solve, or to consider solved, a subset of these four
problems. Actually, almost all the works dealing with room
geometry reconstruction [1–5] use a priori known emitted sig-
nals, typically impulsive or with a high bandwidth-time prod-
uct (e.g., linear frequency sine sweeps) and matched filters
in reception, so allowing an easy estimation of the delays by
simply looking at the temporal peaks of the received signals.
This of course implies the use of additional equipment and the
need to accurately measure the microphone and loudspeaker
impulse responses. Another common assumption is knowing
a priori the positions of the microphones and/or the acoustic
sources [1–6]. In addition, many methods require specific mi-
crophone arrays or source arrangements to avoid ambiguities
in the order of arrival of the reflections [1–4]. The work of
Tervo and Korhonen [6] can be considered as the closest ap-
proach to ours since it employs continuous and unknown sig-
nals. However, they limit the approach to a single reflective
surface with known microphone and sound source positions.

Differently, this paper shows that it is possible to obtain
a solution even if the resulting cost function is strongly non-
linear and characterized by a high number of variables. The
devised strategy is based on a bootstrap approach. First, the
estimation of the delays of arrival related to the walls is de-
coupled from the geometry of the problem. This provides
a double advantage: the non-linearity of the problem is re-
duced and the delay search results in a set of smaller inde-
pendent problems, one for each real source. This allows to
also provide a solution to the dereverberation problem and to
reconstruct the original signals. Second, the shorter delays,
corresponding to the direct paths from the real sources to the
microphones, are used to initialise the microphone and real
source positions. Then, walls positions are estimated, taking
into account a subset of delays found at the first stage, specif-
ically the ones not subject to ambiguities of reconstruction.
Finally, once all the ambiguities are solved, a refinement pro-
cedure reconsider all the delays estimated initially.

The remaining of the paper first presents in Sec. 2 the
room calibration model and define the general optimization
problem. Then we explain in detail the step of the optimiza-



tion algorithms for the signal in Sec. 3 and the geometric
related parts in Sec. 4. Experimental validation is given in
Sec. 5 while future work is discussed in Sec. 6.

2. PROBLEM STATEMENT
Let us first consider the setup for the uncalibrated room recon-
struction problem. As previously stated, the only input avail-
able are a set of N sound signals (not impulsive) recorded by
a set of M microphones in a room with K reflective planes
(i.e. walls, floor and ceiling). Each sound source n with n =
1 . . . N generates a signal ynm(tTs) (Ts being the sampling pe-
riod) that is received by a microphone m with m = 1 . . . M
positioned in a 3D space. The signal ynm(tTs) is given by
the sum of K + 1 propagating signals generated by a single
source nwhereK are given by the image sources correspond-
ing to the reflections from the K planar surfaces. No addi-
tional knowledge is assumed on the sound sources: they are
in general different from each other, not synchronized with
the acquisition system (the time of emission is unknown), and
nothing is known about the signal statistics. The only hypoth-
esis is that the real sound sources are not overlapped in time,
i.e. overlaps occur only between each real source signal and
the corresponding reflections 1.

In more detail, define xnmk(tTs) for t = 1 . . . T and
m = 1 . . . M as the sampled signal received by them-th sen-
sor and generated by the k-th source (regardless of being real
or image sources). Each component xnmk(tTs) received by a
sensor can be seen as a delayed and scaled version of the sig-
nal generated by the real source with a delay depending on the
reflector and sensor position xnmk(tTs) = anm,kx

n(tTs−τnmk)
where xn(tTs) is the signal generated by the real source n,
anm,k and τnm,k are respectively the relative amplitude and the
delay of the n-th signal received by the m-th sensor and com-
ing from the k-th source. We consider the planar surfaces as
perfect acoustic mirrors with a frequency independent atten-
uation coefficient. The signal received at each sensor can be
expressed as the sum of the K + 1 components such that:

ynm(tTs) =
∑
k

anm,kx
n(tTs − τnmk). (1)

In practice Eq. (1) is the expression for the convolution of the
transmitted signal with the K + 1-sparse room impulse re-
sponse (RIR) and recovering the original signal xn(t) corre-
sponds in solving a dereverberation problem. However, each
delay τnmk is given by the specific room configuration and the
positions of microphones and sound events. Notice that each
planar reflector has its own image source pnk defined as:

pnk = bn + 2

(
1− rTk b

n

‖rk‖2

)
rk (2)

1This hypothesis is assumed by all the room reconstruction methods op-
erating with audio signals and can be easily fulfilled in a real situation (e.g.
sources can be realized by different people speaking or hand-clapping in se-
quence, or even a single person moving around in the room)

Fig. 1. The figure shows the real source bn together with the image
source pn

k . The image source is positioned such that the sound path
in red equal the blue path coming from pn

k

where each of the vectors bn, of size 3, represents the 3D
position of the n − th source, and the normal vector rk de-
fines the orientation and distance from the origin 0 of the k-th
planar reflector (as shown in Fig. 1). Thus we have the real
propagation delay τnm1 and the image propagation delay τnmk
with k = 2 . . . K + 1 defined as:

τnm1 = ‖bn − sm‖ /c τnm(k+1) = ‖p
n
k − sm‖ /c (3)

where the vector sm is the 3D position of the m-th micro-
phone; c is the sound propagation speed.

By combining Eqs. (1), (2) and (3) we obtain the final cost
function which combines both the signal based terms (convo-
lution of signals) and the geometrical one given by the mi-
crophones, events and room configuration. Such function is
highly non-linear and finding the right solution among many
local minima is not possible if not close to the basin of at-
traction of the global minimum. However, we show here that
is possible to achieve a reasonable solution by dividing the
problem in different but yet linked components. Figure 2
shows a schematic representation of our approach. First, a
signal processing stage estimates the original signal together
with the delays and amplitudes given by the reflected compo-
nents. Such delays are then used to bootstrap a geometrical
optimization procedure that does delays sorting and associa-
tions together with a local initialization of the microphones
and events positions.

3. SIGNAL AND DELAYS OPTIMIZATION
We now describe the signal and delays optimization that will
estimate xn(t), anmk and τnmk from the input signals ynm(t),
generated by the microphones. Equation (1) can be reformu-
lated in the frequency domain as follows by applying a DFT
such that:

Y nm(f) =
∑
k

anmkX
n(f)e−j2πfτ

n
mkfs (4)

where Y nm(f) and Xn(f) are the DFTs of ynm(tTs) and
xn(tTs) respectively, fs is the sampling frequency nor-
malized by the number of temporal samples T and f =



Fig. 2. Diagram of the overall method. Each box corresponds to a computational step as implemented by our approach. The
figure also presents corresponding input (audio signals) and outputs (mic/sound source position, the transmitted signal, delays
and room walls position).

0 . . . T − 1. The frequency domain representation of the
model brings two advantages. Firstly, the delayed versions of
the signal xn(t) are exactly represented by its spectrum plus
a scalar parameter τnmk, whereas in time domain each delayed
signal has different values of the time samples (unless τnmk is
an exact multiple of the sampling period) so resulting in an
increased number of variables whose mutual dependencies
are not simple to model. Secondly, it is possible to retain only
a fraction of the frequency bins, e.g. the ones with the highest
SNR. Therefore, given the MN spectra Y nm(f), the problem
of recovering all the delays of arrival related to the virtual and
real sources can be recast as N indepedent nonlinear least
squares problem as follows:

minimise
τn
mk,a

n
mk,X

n(f)

∑
m,f

(
Y nm(f)−

∑
k

anmkX
n(f)e−j2πfτ

n
mkfs

)2

(5)
For known delays and amplitudes, the spectrum can be found
in closed-form. Defining yn(f) and zn(f) as the M -vectors
given by Y nm(f) and

∑
k a

n
mkexp (−j2πfτnmkfs) respec-

tively, the estimated frequency bins of Xn(f) are given by:

Xn
est(f) = z+(f)yn(f), (6)

where z+(f) is the pseudo-inverse of zn(f). If only prop-
agation delays are known, the cost function in (5) implies a
bilinear form and, if also the delays are unknown, the prob-
lem becomes even harder. As delays appear in the argument
of complex exponentials, the cost function is strongly non-
linear, yielding to many local minima. For this reason, gra-
dient descent alike methods might easily be trapped in local
minima thus it is necessary to adopt stochastic minimization
procedures such as Simulated Annealing (SA) [7]. Besides its

general ability in dealing with local minima, SA has already
demonstrated its convergence performance in other problems
where variables are arguments of complex exponentials [8,9].
In brief, SA is an iterative procedure aimed at minimizing
the energy function J(v), where v is the vector of the state
variables. At each iteration, a small random perturbation is
induced in the current state configuration vi, where i is the
iteration. If the new configuration, v∗, causes the value of the
energy function to decrease, then it is accepted. If, instead,
v∗ causes the value of the energy function to increase, it is
accepted with a probability dependent on the system temper-
ature, a parameter that is gradually lowered along with the
iterations. In our case we adapted SA using delays and am-
plitudes as the state variable vector, whereas the transmitted
signal spectrum is computed at each iteration in closed form,
according to (6).

4. GEOMETRIC OPTIMIZATION
The estimated delays are used to infer the room and sen-
sors geometry. However the geometric optimization problem
has to face three main issues. First, the delays are estimated
given an unknown time offset representing the time of emis-
sion. Second, the order of arrival of the reflections is differ-
ent at each microphone and for each source, making difficult
to match the delays with the corresponding walls. Finally,
the estimated delays can be subject to ambiguities, whenever
two or more delays are equal2. For instance, consider the
case K + 1 = 3 in which τ1 = τ2 6= τ3 (n and m indexes
dropped for simplicity): if the estimated delays and ampli-
tudes (denoted with ˜ ) are set as τ̃1 = τ1, τ̃2 = τ3, τ̃3 = τ3,
ã1 = a1 + a2, ã2 = ã3 = a2/2 the value of the cost function

2Although it might seem rare, the coincidence of delays is a quite com-
mon effect in most room reconstruction scenarios.



(5) does not change despite the delay estimation is clearly
wrong. The problem is present also if two delays are close
each other (not exactly equal) because (5) will have local min-
ima, very similar to the correct mininimum, for each arbitrary
couple of close delays. To solve for this crucial problem we
propose the following strategy.

First, we sort in ascending order the estimated delays for
each microphone and source and pick up the lower one which
corresponds to the direct path delay. Having collected this
MN delays, we apply the sensor localization algorithms [10,
11] which allow to recover an initial microphone and sources
3D positions (̃sm and b̃n respectively) and the times of emis-
sion τne related to each source n. Given such initialization,
the walls position can be found exploiting a subset of delays
from the previous stage and in particular the ones which do
not hold ambiguities problems. This is done by a pruning
strategy that removes a signal (n,m) if a pair of the delays
associated to that signal is closer than a given threshold. No-
tice that, thanks to the multiple sources employed, after the
pruning stage the data are sufficient for solving the follow-
ing stages. In any case, if a data starving situation appears,
it is possible to lower the threshold to fetch back delays that
were previously removed. A non-linear Least Squares cost
function is then defined as:

min
rk

∑
nm

I (n,m)
∑
k

(
τ̃nmh1(k)

− τne − τ
(
b̃n, s̃m, rh2(k)

))2
(7)

where the indicator function I(n,m) is zero or one according
to the fact that the corresponding set of delays τnmk has been
pruned or not. Instead, the index functions h1(k) and h2(k)
sort the two set of delays τ̃ and τ in ascending in order (for
n and m fixed). This solves the matching problem between
walls and delays since, for the right configuration of walls,
the two sets of delays are equal. Given the non-linearity of
the cost function in respect to the walls position, SA is used
again to solve for (7).

At this stage we have two sets of estimated delays: the
ones obtained from the signal optimization stage τ̃nmk, close
to the correct ones τnmk, but suffering from overlap ambigui-
ties, and the ones produced by the current geometric solution
τ(b̃n, s̃m, r̃k) free of ambiguities but more unprecise due to
the errors added in the geometric reconstruction step carried
out by SA. We can now solve for the ambiguities by a nearest
neighbour approach between the two sets of delays. In detail,
by defining the following relation w̃(k) between indexes:

w̃(k) = argmin
w

(∣∣∣τ̃nmw − τne − τ(b̃n, s̃m, r̃k)∣∣∣) (8)

we can write the set of ambiguity-free delays as τ̃nmw̃(k) for
k = 1 . . .K +1. The procedure can by further clarified look-
ing at Fig. 3 Once ambiguities have been removed we can
now employ the whole set of estimated delays for a final ge-
ometric refinement that jointly optimizes walls, microphones

Fig. 3. Example of delay disambiguation by a NN approach. Each
circle denotes a delay whose value is given by the x-axis. Each ambi-
guity free delay calculated from geometry is associated to the closest
delay estimated from the signals.

and sources positions. Given such initialization, we are likely
to be in the basin of attraction of the global minimum, a gra-
dient based descent can be adopted to optimize the following
cost function:

minimise
bn,sm,rk

∑
nmk

(
τ̃nmw̃(k) − τ

n
e − τ(bn, sm, rk)

)2
(9)

where the quantities b̃n ,̃sm, r̃k are set as initialization values.
The overall procedure is resumed in the scheme as shown in
Fig. 2 with the inputs and outputs of each stage in our method.
Considering the difficulty of the problem, in our model we ne-
glected higher order reflections from the walls. Nevertheless,
if necessary, the proposed method can be extended in order
to handle such reflections, simply increasing the number of
delays to be estimated in (4) and modifying the image source
model (2), employed in the geometric reconstruction, accord-
ing to equations given in [3].

5. EXPERIMENTS

To assess the proposed method we run a set of synthetic ex-
periments. Since, to the best of our knowledge, no literature
method is able to work in the unconstrained conditions set
above, no comparative analysis is possible. Experiments are
mainly aimed at verifying the overall feasibility of the prob-
lem. A rectangular room with sides of 7.5 m, 6.5 m and height
5.5 m has been filled with 10 microphones and 12 sources de-
ployed in random positions. Each source has been generated
filtering a white noise of 0.1 s between 50 and 1000 Hz. An
example of source signal and corresponding signal acquired
from a microphone is shown in Fig. 4. It can be seen that the
replicas are completely overlapped with the original signal.
Reflection amplitudes have been randomly generated accord-
ing to a uniform distribution between 0.1 and 1. An explicit
modeling of amplitudes depending on wall reflection coeffi-
cients and wall areas is not trivial and was therefore left for
future investigations. The threshold for considering two de-
lays as overlapped is set to 0.0002 s corresponding to 6.8 cm.



Fig. 4. Example of emitted signal from a generic source (left), and
related acquired signals at a generic microphone (right).

A Gaussian noise with a StD of 0.01 and 0.025, correspond-
ing respectively to an SNR of 40 dB and 32 dB, has been
added to the signals acquired by the microphones. The whole
computation took a few hours on a common PC working with
Matlab code.In Fig. 5 the ground truth and reconstructed
walls, microphones and sources are displayed for the case
with 0.01. One can see to qualitatively good reconstruction
of the whole structure. To quantify the error of reconstruction
we apply Procrustes analysis and evaluate the RMS value of
the distance between the ground truth and the estimated val-
ues, obtaining an error of 0.15 m for the walls, 0.086 m for
the microphones and 0.082 m for the sources. If normalized
with respect to the maximum room side they correspond to
about 2% (walls) and 1.1% (microphones and sources). The
higher error for the walls is probably due to the outer posi-
tions of the virtual sources with respect to microphones and
real sources. An analogous reconstruction with 0.025 noise
gives the following RMS errors: 0.42 m for the walls, 0.23 m
for the microphones and 0.33 m for the sources.

6. CONCLUSIONS

We have presented an approach for uncalibrated room recon-
struction that provides a solution when no information a pri-
ori is known about sensors, events and room walls position,
shape and time of emission of the transmitted signals and
amplitudes of walls reflections. Despite the complexity of
the problem, involving huge number of variables and thorny
cost functions with several local minima, we demonstrated
its feasibility. The use of natural sounds allows to multiply
the number of sources without expense, making possible the
pruning strategy aimed at solving delay ambiguities. The re-
sults are qualitatively correct even if there is space for im-
proving the precision of reconstruction. Toward this direc-
tion, the obtained solution could be used as starting guess for
a final global minimization involving both signal and geom-
etry parameters. Future work will explore the extension of
the method to higher order wall reflections and will extend
experimentation to real environments.

Fig. 5. Ground truth and reconstruction of walls, microphones and
sources positions yielded by the proposed algorithm.
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[5] I. Dokmanić, R. Parhizkar, A. Walther, and M. Lu, Y. M
.and Vetterli, “Acoustic echoes reveal room shape,” Proc. of
the Nat. Academy of Sciences, 2013.

[6] S. Tervo and T. Korhonen, “Estimation of reflective surfaces
from continuous signals,” in Acoust. Speech and Sig. Proc.
(ICASSP), 2010 IEEE Int. Conf. on. IEEE, 2010, pp. 153–156.

[7] S. Kirkpatrick, D. Gelatt Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” science, vol. 220, no. 4598, pp. 671–
680, 1983.

[8] V. Murino, A. Trucco, and C.S. Regazzoni, “Synthesis of un-
equally spaced arrays by simulated annealing,” Signal Proc.,
IEEE Trans. on, vol. 44, no. 1, pp. 119–122, 1996.

[9] M. Crocco. and A. Trucco, “Stochastic and analytic optimiza-
tion of sparse aperiodic arrays and broadband beamformers
with robust superdirective patterns,” Audio, Speech, and Lang.
Proc., IEEE Trans. on, vol. 20, no. 9, pp. 2433–2447, 2012.

[10] N. D. Gaubitch, W. B. Kleijn, and R. Heusdens, “Auto-
localization in ad-hoc microphone arrays,” in Acoust., Speech
and Sig. Proc. (ICASSP), 2013 IEEE Int. Conf. on, 2013, pp.
106–110.

[11] M. Crocco, A. Del Bue, and V. Murino, “A bilinear approach to
the position self-calibration of multiple sensors,” IEEE Trans.
on Sig. Proc., vol. 60, pp. 660–673, 2012.


