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ABSTRACT

This paper presents a new approximate Bayesian estimator
for hidden Potts-Markov random fields, with application to
fast K-class image segmentation. The estimator is derived by
conducting a small-variance-asymptotic analysis of an aug-
mented Bayesian model in which the spatial regularisation
and the integer-constrained terms of the Potts model are de-
coupled. This leads to a new image segmentation methodol-
ogy that can be efficiently implemented in large 2D and 3D
scenarios by using modern convex optimisation techniques.
Experimental results on synthetic and real images as well as
comparisons with state-of-the-art algorithms confirm that the
proposed methodology converges extremely fast and produces
accurate segmentation results in only few iterations.

Index Terms— Image segmentation, Bayesian methods,
spatial mixture models, Potts Markov random field, convex
optimisation.

1. INTRODUCTION

Image segmentation is a canonical inverse problem which in-
volves classifying image pixels into clusters that are spatially
coherent and have well defined boundaries. It is widely ac-
cepted that this task can be conveniently formulated as a sta-
tistical inference problem and most state-of-the-art image seg-
mentation methods compute solutions by performing statisti-
cal inference (e.g., computing penalized maximum likelihood
or maximum-a-posteriori estimates). In this paper we pro-
pose a small-variance asymptotics estimator for hidden Potts-
Markov random fields (MRFs), a powerful class of statistical
models that is widely used in Bayesian image segmentation
methods (see [1–3] for applications to hyperspectral, ultra-
sound and fMRI imaging). Despite their wide application,
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performing inference on hidden Potts MRFs remains a com-
putationally challenging problem and thus most image pro-
cessing methods compute approximate estimators obtained
via Monte Carlo approximations, mean-field approximations,
local optimisation approximations, etc.

Small-variance asymptotics estimators were introduced in
[4] as a computationally efficient framework for performing
inference in Dirichlet process mixture models and have been
recently applied to other important machine learning classifi-
cation models such as the Beta process and sequential hidden
Markov models [5]. Here we exploit these same techniques
for the hidden Potts MRF to develop a fast converging image
segmentation methodology that delivers accurate segmenta-
tion results in very few iterations. The paper is organised
as follows: in Section II we present a brief background to
Bayesian image segmentation using the Potts MRF. This then
followed by a description of our proposed method and a series
of experiments where the method is applied to some standard
example images. Finally some brief conclusions are drawn in
Section V.

2. BACKGROUND

We begin by recalling the standard Bayesian model used in
image segmentation problems, which is based on a finite mix-
ture model and a hidden Potts-Markov random field. For sim-
plicity we only consider univariate Gaussian mixture models.
However, the results presented hereafter can easily be gen-
eralised to all exponential-family mixture models (e.g., mix-
tures of multivariate Gaussian, Rayleigh, Poisson, Gamma,
Binomial, etc.) by following the approach described in [6].

Let yn ∈ R denote the nth observation (i.e. pixel or voxel)
in a lexicographical vectorized image y = (y1, . . . , yN )T ∈
RN . We assume that y is made up byK regions {C1, . . . , CK}
such that the observations in the kth class are distributed ac-
cording to the conditional observation model

yn|n ∈ Ck ∼ N (µk, σ
2) (1)

where µk ∈ R represents the mean intensity of class Ck. We



Fig. 1. 4-pixel (left) and 6-voxel (right) neighborhood struc-
tures. The pixel/voxels considered appears as a void red circle
whereas its neighbors are depicted in full black and blue.

assume that µk 6= µj for all k 6= j.
To perform segmentation, a label vector z = (z1, . . . , zN )

T

is introduced to map or classify observations y to classes
C1, . . . , CK (i.e., zn = k if and only if n ∈ Ck).

Assuming that observations are conditionally independent
given z and given the parameter vector µ = (µ1, . . . , µK),
the likelihood of y is given by

f(y|z,µ) =
K∏
k=1

∏
n∈Sk

pN (yn|µk, σ2) (2)

with Sk = {n : zn = k}.
The prior for z is the homogenous K-state Potts MRF [7]

f(z) =
1

C(β)
exp [βH(z)] (3)

with fixed hyper-parameter β ∈ R+ and Hamiltonian

H(z) =

N∑
n=1

∑
n′∈V(n)

δ(zn == zn′) (4)

where V(n) is the index set of the neighbors of the nth voxel
and δ(·) is the Kronecker function. Here 2D MRFs are con-
sidered as prior distribution for z for single-slice (2D) images
and 3D MRFs for multiple-slice (3D) images (the correspond-
ing neighborhoods V(n) are depicted in Fig. 1). Similarly, the
class means are assigned Gaussian priors µk ∼ N (0, ρ2) with
fixed variance ρ2 independent of z

f(µ) =

K∏
k=1

pN (µk|0, ρ2). (5)

Then, using Bayes theorem, the posterior distribution of
(z, µ) given y can be expressed as follows

f (z,µ|y) ∝ f(y|z,µ)f(z)f(µ) (6)

where ∝ means “proportional to”.
A segmentation of y is typically obtained by computing

the joint maximum-a-posteriori (MAP) estimator

ẑ1, µ̂1 = argmax
z,µ

f (z,µ|y) (7)

which can also be obtained by solving the equivalent optimi-
sation problem

ẑ1, µ̂1 = argmin
z,µ

− log f (z,µ|y) . (8)

Unfortunately these optimisation problems are known to be
NP-hard due to the combinatorial nature of the Potts Hamil-
tonian H(z). Modern image segmentation methods typically
address this issue by using stochastic simulation or optimisa-
tion algorithms (e.g., MCMC, simulated annealing) [8], local
optimisation algorithms (e.g., EM, iterated conditional mod-
els) [9].

3. PROPOSED METHOD

This section presents a new approach for performing infer-
ence on z based on a small-variance asymptotic analysis com-
bined with a convex relaxation of the Potts MRF. This ap-
proximation will lead to a new estimator of z that can be
computed very efficiently using modern convex optimisation
techniques.

We begin by introducing a carefully selected auxiliary
vector x such that y and (z,µ) are conditionally indepen-
dent given x, and that the posterior f (x, z,µ|y) has the same
maximisers as (6) (after projection on the space of (z,µ)).
More precisely, we define a random vector
x = (x1, . . . , xN )T ∈ RN with degenerate prior

f(x|z,µ) =
K∏
k=1

∏
n∈Sk

δ(xn − µk) (9)

and express the likelihood of the observations y given x, z,µ
as

f(y|x, z,µ) = f(y|x) =
N∏
n=1

pN (yn|xn, σ2).

The prior distributions for z and µ remain as defined in (3)
and (5). The posterior distribution of x, z,µ is given by

f (x, z,µ|y) ∝ f(y|x)f(x|z,µ)f(z)f(µ)

∝

(
K∏
k=1

∏
n∈Sk

pN (yn|xn, σ2)δ(xn − µk)

)
× exp [βH(z)]f(µ).

(10)

Moreover, we define asH∗(z) the “complement” of the Hamil-
tonian H(z) in the sense that for any z

H(z) +H∗(z) = N |V|

where |V| denotes the cardinality of the neighbourhood struc-
ture V . For the Potts MRF this complement is given by

H∗(z) ,
N∑
n=1

∑
n′∈V(n)

δ(zn 6= zn′). (11)



Replacing H(z) = N |V|−H∗(z) in (10) we obtain

f (x, z,µ|y) ∝

(
K∏
k=1

∏
n∈Sk

pN (yn|xn, σ2)δ(xn − µk)

)
× exp [−βH∗(z)]f(µ).

(12)

Note that (12) produces the same MAP segmentation of y
as (8) in the sense that the estimates

x̂2, ẑ2, µ̂2 = argmin
x,z,µ

− log f (x, z,µ|y)

verify ẑ2 = ẑ1 and µ̂2 = µ̂1, and that x̂2 is perfectly deter-
mined by ẑ2, µ̂2 through (9).

Furthermore, noting that H∗(z) only measures if neigh-
bour labels are identical or not, regardless of their values, it is
easy to check that the posterior (12) remains unchanged if we
substitute H∗(z) with H∗(x)

f (x, z,µ|y) ∝

(
K∏
k=1

∏
n∈Sk

pN (yn|xn, σ2)δ(xn − µk)

)
× exp [−βH∗(x)]f(µ).

(13)

Finally, we make the observation that for 1st order neighbour-
hoods we have H∗(x) = 2||∇x||0, where
||∇x||0= ||∇hx||0+||∇vx||0 denotes the `0 norm of the hor-
izontal and vertical components of the 1st order discrete gra-
dient of x, and

f (x, z,µ|y) ∝

(
K∏
k=1

∏
n∈Sk

pN (yn|xn, σ2)δ(xn − µk)

)
× exp [−2β||∇x||0]f(µ).

(14)

We are now ready to conduct a small-variance asymptotic
analysis on (14) and derive the MAP asymptotic estimator of
x, z,µ, which is defined as [4]

argmin
x,z,µ

lim
σ2→0

−σ log f (x, z,µ|y) .

First, we use the fact that δ(s) = limτ2→0 pN (s|0, τ2) to ex-
press (14) as follows

f (x, z,µ|y)

∝ lim
τ2→0

(
K∏
k=1

∏
n∈Sk

pN (yn|xn, σ2)pN (xn|µk, τ2)

)
× exp [−β||∇x||0]f(µ)

∝ lim
τ2→0

(
K∏
k=1

∏
n∈Sk

exp

(
− (xn − yn)2

2σ2
− (xn − µk)2

2τ2

))
× exp [−β||∇x||0]f(µ)

(15)

Then, in a manner akin to Broderick et al. [4], we allow the
model’s hyper parameters to scale with σ in order to pre-
serve the balance between the prior and the likelihood and
avoid a trivial limit. Precisely, we set β = β′/2σ and as-
sume that σ vanishes at the same rate as τ . Then, the limit of
−σ2 log f (x, z,µ|y) as σ2 → 0 is given by

lim
σ2→0

−σ2 log f (x, z,µ|y) =
K∑
k=1

∑
n∈Sk

1

2
(xn − yn)2

+
1

2
(xn − µk)2 + β′||∇x||0

(16)

and the MAP asymptotic estimators of x, z,µ by

argmin
x,z,µ

K∑
k=1

∑
n∈Sk

1

2
(xn − yn)2

+
1

2
(xn − µk)2 + β′||∇x||0.

(17)

Unfortunately (17) is still NP-hard due to ||∇x||0. However,
unlike (8), (17) can be easily approximated by a convex op-
timisation problem (in x) and thus efficiently solved using
state-of-the-art convex optimisation methods. More precisely,
we replace ||∇x||0 by its convexification ||∇x||1 and propose
the following estimators of x, z,µ

x̂3, ẑ3, µ̂3 = argmin
x,z,µ

K∑
k=1

∑
n∈Sk

1

2
(xn − yn)2

+
1

2
(xn − µk)2 + β′TV(x)

(18)

where TV(x) = ||∇x||1 is the total-variation norm of x.
These estimates can be very efficiently computed by itera-
tively minimising (18) w.r.t. x, z and µ. The minimisation
w.r.t. x is equivalent to a total-variation denoising problem
that can be very efficiently solved, even in high-dimensional
scenarios, by using modern convex optimisation techniques
(in this paper we used FISTA on the dual problem [10]). Sim-
ilarly, the joint minimisation w.r.t. z and µ is equivalent to
performing a K-means clustering on x that can also be (ap-
proximately) solved very efficiently in high dimensions.

4. RESULTS

This section presents two experiments conducted to assess the
performance of the proposed image segmentation methodol-
ogy. All experiments have been computed on an Intel i7 quad-
core workstation running MATLAB 2013a.

In the first experiment we compare our method with three
algorithms from the state of the art: the Chan-Vese active con-
tour by natural gradient descent [11], the Chan-Vese active
contour by generalised Newton descent, and the two-stage



convex optimisation and thresholding method [12]. To guar-
antee that the comparisons are fair we have used a synthetic
shape image from [13], which has also been used in [11],
and the accompanying MATLAB codes. This image of size
216× 187 pixels contains 3 objects with well defined bound-
aries and is contaminated with white additive Gaussian noise
of 5.36dB SNR. For this experiment, we implemented our
method using K = 2 and β′ = 0.25, and the Two-stage algo-
rithm using K = 2 and λ = 40 as these values produced the
best results. For the natural gradient and generalised Newton
methods we have used σ = 0.75 and σ = 1 respectively as in
[11] and [13]. The methods from the state of the art require
initialising an active contour function which we have set to
a right circular cone as recommended in [13] and [11]. Our
method has been initialised by setting x(0) = y.

Fig. 2 depicts in red the contours estimated with each
method (for the methods based on active contours the initial-
isation is depicted in blue). Fig. 2(a) shows the segmentation
obtained with the proposed method. The results obtained with
the natural gradient descent [11], the Two-stage algorithm
[12] and the generalised Newton method [13] are presented in
Figures 2(b), 2(c) and 2(d). We observe that all four methods
produced very accurate segmentation results (note however
that many other methods from the state-of-the-art produce
segmentation results that are significantly less accurate, see
the experiments in [11, 13]). More importantly, Table 1 shows
that the proposed method converged in only 2 iterations (0.22
seconds), closely followed by the natural gradient descent (2
iterations, 0.24 seconds), which is the fastest state-of-the-art
method for this type of two-class image segmentation prob-
lems [11]. These two methods were 3 times faster than the
Two-stage algorithm, which required 13 split-Bregman itera-
tions and 0.71 seconds to converge, and 25 times faster then
generalised Newton method, which required 30 iterations and
5.77 seconds. Additional segmentation results obtained with
other state-of-the-art methods are provided in [11, 13].

Table 1. Experiment 1: Convergence and computing times.
Iterations Comp. time (sec)

Proposed method 2 0.22

Natural gradient [11] 2 0.24

Two-stage algorithm [12] 13 0.71

Generalised Newton [13] 30 5.77

An important property of the proposed method is that it
can be applied to problems with more than two classes (as
opposed to the methods from [11, 13] which have been specif-
ically designed for K = 2). The second experiment applies
the proposed method to one slice of a 3D in-vivo MRI image
of a human brain, which is depicted in Fig. 3(a). Note that this
image is composed by three biological tissues (cerebro spinal
fluid, white matter, and grey matter) with complex shapes and

(a) Proposed method (b) Natural grad. [11]

(d) Two-stage algorithm [12] (c) generalised Newton [13]

Fig. 2. Comparison with the state of the methods [11], [12] and
[13] using the synthetic shape image from [13] (216 × 187 pixels,
additive Gaussian noise, SNR 5.36 dB).

textures, making the segmentation problem challenging. The
segmentation obtained with our method using β′ = 1.0 and
K = 2 is depicted in Fig. 3(b), and with β′ = 1.0 and K = 3
in Fig. 3(c). This result has been computed in only 2 iterations
(0.23 seconds) for K = 2 and 2 iterations (0.26 seconds) for
K = 3, confirming that the proposed algorithm can produce
accurate segmentation results in very few iterations.

5. CONCLUSIONS

We presented a new approximate Bayesian estimator for hid-
den Potts-Markov random fields based on a small-variance-
asymptotic analysis of an augmented Bayesian model and a
convex relaxation. The estimator can be very efficiently com-
puted by using an alternating direction scheme based on a
total-variation denoising step and a K-means clustering. This
leads to a new image segmentation methodology that con-
verges extremely fast and produces accurate segmentation re-
sults in only few iterations. A detailed analysis of the pro-
posed estimator and of the proposed optimisation scheme is
currently under investigation. Perspectives for future work
include the estimation of β′ jointly with the other unknown
parameters of the model as in [8], as well as a comparison
with other Bayesian segmentation methods based on convex
models and graph-cut algorithms [14].
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Fig. 3. Segmentation of a brain MRI image (256× 256 pixels).


