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ABSTRACT
Sensor networks are becoming increasingly prevalent for
monitoring physical phenomena of interest. For such wire-
less sensor network applications, knowledge of node location
is important. Although a uniform sensor distribution is com-
mon in the literature, it is normally difficult to achieve in
reality. Thus we propose a robust algorithm for reconstruct-
ing two-dimensional diffusion fields, sampled with a network
of arbitrarily placed sensors. The two-step method proposed
here is based on source parameter estimation: in the first step,
by properly combining the field sensed through well-chosen
test functions, we show how Prony’s method can reveal lo-
cations and intensities of the sources inducing the field. The
second step then uses a modification of the Cauchy-Schwarz
inequality to estimate the activation time in the single source
field. We combine these steps to give a multi-source field
estimation algorithm and carry out extensive numerical sim-
ulations to evaluate its performance.

Index Terms— Spatio-temporal sampling, sensor net-
works, diffusion process, reciprocity gap, Prony’s method

1. INTRODUCTION

The diffusion equation is the underlying model for numer-
ous biological and physical phenomena such as, temperature
variation in fluids, disease epidemic dynamics, nuclear and
bio-chemical substance releases. Indeed the use of sensor
networks to obtain spatio-temporal samples of such physical
fields is common. However, the space-time dimensions of
these diffusion processes are generally inhomogeneous, thus
regular multidimensional sampling theory [1] no longer ap-
plies. Consequently, a robust and efficient solution to this
sampling and reconstruction problem will strongly impact
several real-life applications such as, pollution detection [2],
environmental monitoring [3] and energy efficiency monitor-
ing in large data center clusters [4].

In this paper, we demonstrate that the diffusion field sam-
pling and reconstruction problem can be reformulated as a
parametric source estimation problem. Indeed works in the
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area have focused mainly on source localization. For exam-
ple, Lu and Vetterli proposed two methods for source local-
ization, namely spatial super-resolution [5] and an adaptive
sampling scheme [6]. A localization method based on L1

constrained optimization is introduced in [7]. Ranieri et al
proposed a compressed sensing approach [8], whilst Auffray
et al proposed a method based on the reciprocity gap [9].
Ranieri and Vetterli [10] have also considered uniform spa-
tial sampling and reconstruction using classical interpolation
techniques. Moreover, Rostami et al [11] solved the recon-
struction problem using diffusive compressive sensing (DCS),
whereas Lu et al proposed a method to fully estimate a single
source field by solving a set of linear equations [12]. Unfor-
tunately some of these state of the art techniques are either:
unstable in the presence of noise, unable to fully reconstruct
the entire field, or require uniform spatial sampling, which is
often difficult to achieve in practice [13].

Therefore, we propose a simple, noise robust algorithm
that properly operates on arbitrary spatiotemporal samples of
the field—obtained by an arbitrary network of sensors—in or-
der to fully infer the diffusion field. The method proposed
herein is two-step: (i) relying on the use of a family of proper
analytic test functions to sense the field, we reformulate the
source location and intensity estimation problem in the tra-
ditional finite rate of innovation setting [14] which can be
solved using Prony’s method; a similar technique is applied
in [15] for static fields governed by Poisson’s equation, then,
(ii) the single source activation time is retrieved by perform-
ing a simple linear search. Furthermore, we propose the use of
a damped exponential as the test function for increased stabil-
ity in the localization step. We also provide simulation results
to test and validate the proposed algorithm.

The paper is organized as follows. Section 2 formally
presents the sampling and reconstruction problem in the
source estimation setting. In Section 3, we use Green’s
second identity for multiple source intensity and location re-
trieval, along with the linear search method for single source
activation time estimation. This section is concluded by
combining these solutions to give a single source estimation
algorithm which is then generalized to a multiple source field.
Numerical simulations are given in Section 4 and concluding
remarks in Section 5.



2. RECONSTRUCTION PROBLEM FORMULATION

We consider the problem of reconstructing two-dimensional
diffusion fields. Specifically, we focus on the case where the
spatiotemporal samples of the field are obtained by a network
of randomly deployed sensors. Denote by u(x, t) the diffu-
sion field at location x ∈ R2 and time t, induced by some un-
known source distribution f(x, t) within a two-dimensional
region Ω. In such a setting the field will propagate Ω accord-
ing to the diffusion equation,

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium through which the
field propagates. Moreover, from the theory of Green’s func-
tions this PDE has solution:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
4πµte

− ‖x‖
2

4µt H(t) is the Green’s function of
the two-dimensional diffusion field, and H(t) is the unit step
function. In fact Equation (2) implies that the entire field
u(x, t) can be perfectly reconstructed provided the source dis-
tribution f(x, t) is known exactly. Therefore, this paper will
concentrate on estimating the source distribution f given dis-
crete measurements of the field. In particular, we will restrict
our discussion to fields induced by M sources localized in
both space and time, such a distribution is characterised by:

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− tm), (3)

where cm, tm ∈ R are the intensity and activation time of the
m-th source respectively and ξm ∈ Ω is the source location.

In this context, the field reconstruction problem is equiv-
alent to estimating the parameters {cm, ξm, tm : m =
1, . . . ,M} using arbitrary spatiotemporal samples of the
field u. For clarity, the problem can be stated as follows;
P : Given spatiotemporal samples ϕn(tl) = u(xn, tl),

of the field u, at times tl for l = 0, 1, . . . , L and at arbitrary
spatial locations xn ∈ Ω for n = 1, 2, . . . , N , we intend to
estimate {cm, ξm, tm : m = 1, . . . ,M} from {ϕn(tl) : n =
1, . . . , N ; l = 0, . . . , L}.

In the following section, it is shown that finding the inten-
sities and locations (in the problem P) can be mapped to the
typical finite rate of innovation (FRI) [14] setting. In addition
for M = 1, we also show how the activation time may be
retrieved using a simple line search algorithm.

3. DIFFUSION SOURCE ESTIMATION

In this section we use Green’s second identity to relate the
field measurements within the domain Ω to the locations and
intensities of the sources inside Ω. This relation yields a Van-
dermonde system, which can be solved under certain condi-
tions. Next we propose a method for estimating the activation
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Fig. 1. Sensor placement within the domain Ω.

time for the single source case, given its location and inten-
sity.

3.1. Multi-Source Localization and Intensity Estimation

We begin by relating the field measurements in Ω to the
source parameters. Let ψ and u be twice differentiable func-
tions in Ω, then Green’s second identity relates the boundary
integral and the integral over the bounded region as follows:∮
∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS =

∫
Ω

ψ∇2u− u∇2ψ dV, (4)

where n̂∂Ω is the outward pointing unit normal vector to the
boundary ∂Ω of Ω. Moreover, if ψ satisfies ∂ψ

∂t + µ∇2ψ = 0
in Ω, and u(x, t) satisfies (1), then Equation (4) is such
that

∮
∂Ω

(ψ∇u− u∇ψ) · n̂∂Ω dS = 1
µ

∫
Ω
ψ
(
∂u
∂t − f

)
+

u∂ψ∂t dV = 1
µ

∫
Ω

∂
∂t (uψ)− ψf dV. Furthermore, multiplying

through by µ and time-integrating over t ∈ [0, T ] yields:∫
Ω

(ψu)(x, T ) dV − µ
∮
∂Ω

(ψ∇U − U∇ψ) · n̂∂Ω dS

=

∫ T

0

∫
Ω

ψf dV dt,

(5)

where U(x) =
∫ T

0
u(x, t)dt. For convenience, we will de-

note the left-hand side of Equation (5) byR(ψ). Hence,

R(ψ) =

∫ T

0

∫
Ω

ψf dV dt. (6)

Setting ψ → Ψk(x) = e−k(x1+jx2), where k ∈ Z and given
the instantaneous source parameterisation of Equation (3),
Equation (6) results in the following Vandermonde system:

R(k) =

M∑
m=1

cme
−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K (7)

where R(k) = R(Ψk). Such a system is well studied and
can be solved using Prony’s method [14, 16] provided K ≥
2M − 1. The choice of Ψk here is important for numerical
stability of the Vandermonde system, hence we choose the
damped complex exponential specifically for this reason.

Notice that the sequence R(k) is estimated by properly
combining measurements {ϕn(tl)} of the field, through the



use of sensing functions Ψk. Specifically in this 2D setup, a
surface and boundary integral both need to be estimated. For
the surface integral, we retrieve the Delaunay triangulation of
all the sensor locations to obtain a set {∆i}Ii=1 of I trian-
gular elements such that ∪Ii=1∆i = Ω, and ∆i ∩ ∆j = ∅
for i 6= j. Then according to Georg [17],

∫
Ω
h(x)dV ≈∑

i
1
3

∑3
j=1 h(vij)Area(∆i), where vij are the vertices of

∆i. To estimate the line integral, measurements obtained by
the convex hull sensors are combined, in a similar manner,
using standard quadrature methods [18] with a piecewise lin-
ear approximation. Consequently we are able to obtain an
approximation for the sequence {R(k)}Kk=0. Then provided
K ≥ 2M − 1, Prony’s method can be used to reveal the
source locations and concentrations by annihilating the se-
quence {R(k)}. Since this sequence also captures informa-
tion on the number of active sources over a measurement hori-
zon, it is possible to exploit this property in the multi-source
estimation case. In particular, by examining the rank of the
Hankel matrix constructed from {R(k)} we can accurately
infer the number of sources inducing the field.

3.2. Single Source Activation Time Retrieval

Let M = 1 such that the 2-D field of interest is induced by
a single source having intensity c, location ξ and activation
time τ . We propose a simple line search algorithm to esti-
mate τ , provided ξ and c have already been retrieved using
Equation (7). Consider the samples {ϕn(tl) : l = 0, . . . , L}
collected by the n-th sensor (located at xn); the aim is to
choose a τ̂ that produces a reconstructed sequence ϕ̂n(tl) =

û(xn, tl) = c
4πµ(tl−τ̂)e

− ‖xn−ξ‖
2

4µ(tl−τ̂) H(t − τ̂) that is most simi-
lar to the measured sequence {ϕn(tl) : l = 0, . . . , L}. To this
end, we vary τ̂ between (0, T ] and reconstruct the sequence
ϕ̂n(tl) for each value of τ̂ . Comparing the normalized in-
ner product between the reconstructed sequence and the mea-
sured sequence, we choose the τ̂ that maximizes this normal-
ized inner product – a modification of the Cauchy-Schwarz
inequality for vectors.

3.3. Single Source Estimation Algorithm

The single source estimation algorithm from sensor network
measurements is presented in Algorithm 1. The suggested ap-
proach is two-step, in the first step the sensor measurements
are used collaboratively to infer the source’s location and in-
tensity. In the second step, a selection of the nearest sensors
to the estimated source are each independently used to esti-
mate the activation time of the source; their average is taken
to give an improved estimate of the activation time.

3.4. Multi-Source Estimation Algorithm

Algorithm 1 is easily extended to the multiple source case
provided the diffusion sources have distinct activation times;

Algorithm 1 Single Diffusion Source Estimation
Require: {ϕn(tl)}, sensor locations xn, sampling interval

∆T
1: Retrieve the convex hull of the set of points xn, these

sensors define the boundary ∂Ω in Equation (5).
2: Initialize K ≥ 1 and set window length T = α∆T

(where α ∈ Z, α >> 1).
3: Estimate sequence {R(k) : k = 0, . . . ,K} for t ∈ [0, T ].
4: Annihilate the sequence {R(k) : k = 0, 1, . . . ,K} to

find concentration-location pair (σ, ξ). For multiple pairs
(σi, ξi), select the pair with largest σi.

5: Select the β ∈ N nearest sensors to ξ. For each of the β
sensors, retrieve τ̂1, . . . , τ̂β as described in Section 3.2.

6: Then c← σ, τ ←average{τ̂1, τ̂2, . . . , τ̂β}.
7: Return concentration c, location ξ and activation time τ .

such that the sampling interval is small enough to resolve the
activation of two consecutive sources. The modification is
based on finding a time interval over which a single source
is active—by examining the rank of the Hankel matrix con-
structed from the sequence R(k), for example—estimating
the source and then removing its contribution to the field mea-
surements, to give the adjusted measurements. This process
is then repeated on the adjusted measurements until it falls
below a predefined threshold.

4. SIMULATIONS AND RESULTS

The 2-D diffusion field is simulated numerically on MATLAB
using Equation (2) and samples of the field collected by sen-
sors randomly deployed over a square region. In the results
presented, each trial utilizes both a new arbitrary placement of
sensors and realization of white Gaussian noise (with speci-
fied SNR).

4.1. Source Estimation Results

Trial 1 2 3 4 5 6 7 8 9 10
Intensity 1.21 0.81 1.07 0.94 1.00 0.91 0.99 1.20 0.94 1.02

Table 1. Corresponding estimated concentrations.

In the single source estimation results summarized in
Figure 2 and table 1 the algorithm successfully recovers the
source parameters with good accuracy even in the presence
of noise, given only a few sensors. Furthermore, Figure 3
shows the performance of the algorithm in the multi-source
case. In Figure 3(a) recovery is attempted given a few sen-
sors, estimation accuracy is satisfactory but can be improved
by increasing the number of sensors as shown in Figure 3(b).
In fact, increasing the number of sensors improves the ro-
bustness of the algorithm to sensor noise. As we will discuss
in Section 4.2, this claim if further reinforced by the results
given in Figure 4.
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(a) 45 Randomly distributed sensors.
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(b) 63 Randomly distributed sensors.
Fig. 3. Estimation of M = 3 diffusion sources using randomly distributed sensors in 20dB of measurement noise. Intensities
c1 = c2 = c3 = 1; locations ξ1 = (0.113, 0.221), ξ2 = (0.234, 0.175), ξ3 = (0.070, 0.100); and activation times t1 =
1.2s, t2 = 5.1s, t3 = 10.4s. Field is sampled for Tend = 15seconds at a frequency 1

∆T = 1Hz and K = 5 i.e. k = 0, 1, . . . , 5

for the test function family Ψk(x) = e−k(x1+jx2). The scatter-plot shows the true source locations (blue ‘+’), the estimated
locations (red ‘×’) and one realization of the sensor distribution (green ‘◦’).
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Fig. 2. Single (M = 1) diffusion source estimation using 45
randomly distributed sensors in 15dB of measurement noise.
Intensity c1 = 1, location ξ1 = (0.113, 0.221) and activation
time t1 = 1.213s. Field is sampled for Tend = 10seconds at a
frequency 1

∆T = 1Hz and K = 3 i.e. k = 0, 1, . . . , 3 for the
test function family Ψk(x) = e−k(x1+jx2). The scatter-plot
shows the true source location (blue ‘+’), the estimated loca-
tions (red ‘×’) and one realization of the sensor distribution
(green ‘◦’).

4.2. Approximation Errors: Discretization of Integrals
The results provided in this section aim to demonstrate that
the effects of sensor noise outweigh the “errors” from ap-
proximating the integrals in (5) given discrete measurements
of the field. To achieve this, we compare the localization re-
sults from applying Prony’s method to two sequences which
we denote as {Rmeas(k)} and {Rn(k)} for k = 0, 1, . . . ,K.
{Rmeas(k)} is constructed from noisy sensor measurements
and represents the real discretized case where the integrals in
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Source Separation = 0.08 and Number of Sensors = 63
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Fig. 4. Standard deviation of location estimates (500 tri-
als) for simultaneous double (M = 2) source localization
using 63 randomly distributed sensors. c1 = c2 = 1;
ξ1 = (0.23, 0.15), ξ2 = (0.15, 0.15); and t1 = t2 = 1.2s.
Tend = 10seconds, 1

∆T = 1Hz and K = 5.

(5) are approximated by weighted sums of the field. Con-
versely, {Rn(k)} is obtained by adding an equivalent noise
process to the exact power-sum series, and thus represents the
non-discretized case where we are able to compute the inte-
grals in (5) exactly. Figure 4 shows the standard deviation of
the estimated xy-locations for the double source field given
{Rmeas(k)} (dashed lines) and {Rn(k)} (solid lines). Ob-
serve that for realistic sensor network SNRs of interest, i.e.



30dB or less, the performance of the location recovery co-
incides with that of the ideal case – that is {Rn(k)} which
represents a sequence constructed from continuous but noisy
field measurements. These simulations also suggest that the
estimation algorithm remains unbiased despite the discrete
approximation of the integrals in Equation (5).

5. CONCLUSION

An algorithm for reconstructing a 2-D diffusion field from its
arbitrary spatiotemporal samples is presented. The method
proposed herein solves the source estimation problem when
the sources are localized and instantaneous. Moreover sim-
ulations show that the proposed algorithm is robust to noise,
even in the multiple source setting, thanks to the averaging
effects of the time integrated field and the averaging of mul-
tiple activation time estimates from the nearest sensors to the
source. In addition we demonstrate through simulations that
the effects of discretization is negligible for realistic measure-
ment noise levels, since the performance of the localization
step is similar for the approximate sequence Rmeas(k) con-
structed from noisy sensor measurements, when compared to
the exact sequenceRn(k) corrupted with noise.
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