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ABSTRACT

We propose the discrete semi-local total variation (SLTV) as

a new regularization functional for inverse problems in imag-

ing. The SLTV favors piecewise linear images; so the main

drawback of the total variation (TV), its clustering effect, is

avoided. Recently proposed primal-dual methods allow to

solve the corresponding optimization problems as easily and

efficiently as with the classical TV.

Index Terms— total variation, non-local regularization,

inverse problem, convex optimization, proximal method

1. INTRODUCTION

Many inverse problems in imaging can be regularized and put

under the form of convex optimization problems: given the

data y and the linear observation operatorA, one aims at solv-

ing problems like

x̂ = argmin
x

J (x) s.t. Ax = y, or (1)

x̂ = argmin
x

λ
2 ‖Ax− y‖2 + J (x), (2)

where J is a convex regularization functional and λ > 0 is

the regularization parameter. The classical Tikhonov regu-

larizer J (x) = ‖∇x‖22 generally makes the problem easy to

solve, but yields over-smoothing of the textures and edges in

the recovered image x̂. A popular and better regularizer is

total variation (TV), see e.g. [1]:

JTV(x) = ‖∇x‖1,2 =
∑

k∈Z2 ‖∇x[k]‖2, (3)

where ‖a‖2 =
√

|a1|2 + |a2|2,

∇x[k] =
[

x[k1 + 1, k2]− x[k], x[k1, k2 + 1]− x[k]
]T

(4)

and x[k] is the pixel value of x at location k = [k1, k2]
T. TV

regularization yields images with sharp edges but the textures

are still over-smoothed, there are staircasing effects and the

pixel values in smooth regions are clustered in piecewise con-

stant areas, which gives a synthetic look to the reconstructed

images.

To overcome the drawbacks of regularizers based on the

local interactions of adjacent pixels solely, non-local methods

have become increasingly popular. The non-local functional

of Gilboa et al. [2, 3] can be expressed as

JNL(x) =
∑

k∈Z2

∑

l∈Z2

φ(|x[k] − x[l]|)w(k, l) (5)

for a positive convex function φ. The nonnegative and sym-

metric weight function w(k, l) accounts for the similarity be-

tween the image features at locations k and l. Its choice is

critical. It can be obtained based on patch distances in a first

estimate of the solution obtained by solving the problem with

Tikhonov or TV regularization; or it can be defined implicitly

from the geometry of the image and updated iteratively at the

same time as the solution [4].

In this work, we propose instead a regularizer based on

gradient differences instead of pixel values differences and

without the introduction of the weight function, which is dif-

ficult to determine. The functional is as follows:

JSLTV(x) =
∑

k∈Z2

∑

l∈Z2 | l−k∈Ω

‖∇x[k]−∇x[l]‖2, (6)

for some set of pixels Ω ⊂ Z
2. JSLTV is semi-local, since the

gradient is compared to other gradients in its neighborhood.

This functional was proposed and studied in the continuous

domain by Kindermann et al. [5], as a semi-local extension

of the total variation. Since JSLTV(x) = 0 if x represents an

affine image, it is expected that the minimization ofJSLTV fa-

vors piecewise affine solutions over piecewise constant ones,

avoiding staircasing. This has been confirmed by experiments

in [5].

Note that that if the set Ω is symmetric, (6) can be rewrit-

ten as

JSLTV(x) = 2
∑

k∈Z2

∑

l∈Z2 | l−k∈Ω,l<k

‖∇x[k]−∇x[l]‖2,

(7)

where l < k is understood in the lexicographic order. There-

fore, we can choose Ω as one half of a symmetric set. This is

advantageous because the size of the memory buffers in the

algorithms is proportional to the size of Ω. The following set

is used:

k10

k2



Indeed, we found out empirically that a smaller neighborhood

is not able to efficiently capture the local correlations, while

there is virtually no difference when further increasing the

size of Ω.

In [5], the problem (2) was solved approximately by

smoothing, i.e. replacing ‖a‖2 by
√

|a1|2 + |a2|2 + ε for

a small ε > 0, and using a Euler method for the steepest

descent flow, a particularly slow approach. Recent advances

in optimization theory have made the computational solution

of the problems (1) and (2), with convex non-smooth regular-

izers like the TV, easy and fast [6–10]. In the next section, we

detail the implementation of an efficient optimization method

to regularize problems with SLTV. We demonstrate the im-

provement of SLTV over TV by experiments in Sect. 3. We

stress that this work does not aim at giving state-of-the-art

results in inverse imaging problems. Instead, we modestly

show how regularization by SLTV can be harnessed easily

to a variety of applications, potentially yielding better results

than the popular TV.

2. A PRIMAL-DUAL ALGORITHM FOR SLTV

MINIMIZATION

Numerous problems in engineering can be formulated as the

minimization of a sum of convex functions, not necessar-

ily differentiable, possibly composed with linear operators.

Proximal splitting methods solve the problems iteratively by

calling either the gradient or the proximity operator of each

function [11]. The proximity operator of a convex function g
is defined by

proxg(x) = argmin
x′

g(x′) +
1

2
‖x− x′‖2. (8)

The classical splitting methods, like the forward-backward or

Douglas–Rachford methods [11], cannot be used to solve the

problems (1) and (2), since they would require evaluations of

proxJ , for which there is no closed form. Recent advances in

the field have enabled to solve the generic problem

Find x̂ ∈ argmin
x∈X

f(x) + g(x) + h(Lx), (9)

where f , g, h are convex functions, with f supposed differ-

entiable, L : X → U is a linear operator, X and U are real

Hilbert spaces. The primal-dual algorithms in [8, 9] allow to

solve this problem, using at every iteration calls to ∇f ,proxg,

proxh, L and its adjoint L∗. In this paper, we present the

algorithm of [9, 12], which is as follows:

Splitting algorithm to solve (9)

Choose the parameters τ > 0, σ > 0, ρ > 0 and the initial

estimates x(0) ∈ X , u(0) ∈ U . Then iterate, for i = 0, 1, . . .














x̃(i+1) := proxτg
(

x(i)−τ∇f(x(i))−τL∗u(i)
)

,

x(i+1) := ρ x̃(i+1) + (1− ρ)x(i),

ũ(i+1) := proxσh∗

(

u(i) + σL(2x̃(i+1) − x(i))
)

,

u(i+1) := ρ ũ(i+1) + (1− ρ)u(i).

In the algorithm, h∗ is the convex conjugate of h, about

which it is generally sufficient to know that proxσh∗(u) =
u− σ proxh/σ(u/σ).

There are several ways to recast the problems (1) and (2)

as particular cases of (9); in all cases, the regularizer JSLTV

is assigned to the term h ◦ L:

• The problem (1) corresponds to f = 0 and g(x) =
{0 if Ax = y, +∞ else}. We have proxτg(x) =

x+A†(y−Ax), where A† is the Moore-Penrose pseudo-

inverse ofA. IfAA∗ is invertible, thenA† = A∗(AA∗)−1.

Convergence of the algorithm is guaranteed if τσ‖L‖2 ≤
1 and ρ < 2.

• For the problem (2), one can set f(x) = λ
2 ‖Ax− y‖2 and

g = 0. Then, ∇f(x) = λA∗(Ax − y). Convergence of

the algorithm is guaranteed if τ(λ‖A‖2/2 + σ‖L‖2) < 1
and ρ = 1.

• For the problem (2), another choice (adopted for the ex-

periments in Sect. 3) is to set f = 0 and g(x) = λ
2 ‖Ax−

y‖2. Then, proxτg(x) = (Id + λτA∗A)−1(x + λτA∗y).
Note that if AA∗ = µId for some µ > 0, this simplifies

to proxτg(x) = x+ λτ
1+λτµA

∗(y −Ax). Convergence of

the algorithm is guaranteed if τσ‖L‖2 ≤ 1 and ρ < 2.

Let us now define the operator L corresponding to SLTV.

Let N be the number of pixels in Ω (20 with our choice) and

m1, . . . ,mN ∈ Z
2 be the elements of Ω. Then, Lx = u with

u[k]n = ∇x[k] −∇x[k +mn] ∈ R
2, (10)

for every k ∈ Z
2 and n = 1, . . . , N . We also have L∗

u = x
with, for every k ∈ Z

2,

x[k] =

N
∑

n=1

u[k1 − 1, k2]n,1 − u[k]n,1 −

u[k1 −mn,1 − 1, k2 −mn,2]n,1 +

u[k1 −mn,1, k2 −mn,2]n,1 +

u[k1, k2 − 1]n,2 − u[k]n,2 − (11)

u[k1 −mn,1, k2 −mn,2 − 1]n,2 +

u[k1 −mn,1, k2 −mn,2]n,2.

We have ‖L‖2 = ‖L∗L‖ and L∗L is a linear shift-

invariant operator on images; that is, it corresponds to a con-

volution: L∗L(v) = v ∗ p for some filter p. Hence, ‖L∗L‖ =

sup
ω∈[−π,π]2 p̂(ω), where p̂(ω) =

∑

k∈Z2 p[k]e−jωT
k is

the Fourier transform of p. For the set Ω depicted in the

Introduction, we have ‖L‖2 ≈ 325.63.

Now, the function h so that JSLTV = h ◦ L is

h(u) =
∑

k∈Z2

N
∑

n=1

‖u[k]n‖2. (12)

The convex conjugate of h is h∗ : u 7→ {0 if maxk∈Z2

maxn=1,...,N ‖u[k]n‖2 ≤ 1, +∞ else}.



Proof: with this definition of h∗, we have

(h∗)
∗
(u) = sup

v

〈u,v〉 − h∗(v) (13)

= sup
0<ρ≤1

sup
v | max

k∈Z2
maxn=1,...,N ‖v[k]n‖2=ρ

〈u,v〉 (14)

= sup
0<ρ≤1

ρ
∑

k∈Z2

N
∑

n=1

‖u[k]n‖2 (15)

=
∑

k∈Z2

N
∑

n=1

‖u[k]n‖2 = h(u). � (16)

Hence, proxσh∗ is the orthogonal projection which maps u to

v with, for every k ∈ Z
2, n = 1, . . . , N ,

v[k]n =
u[k]n

max(‖u[k]n‖2, 1)
. (17)

In the experiments of the next section, with pixel values in

the range [0, 255], we chose τ = 0.1, σ = 1/‖L‖2/τ , ρ = 1.

3. EXPERIMENTAL EXAMPLES

3.1. Denoising

We first consider the denoising problem, where the observa-

tion operator is the identity: A = Id. In Fig. 2, four parts

of popular test images are shown, corrupted by additive white

Gaussian noise (AWGN) of standard deviation σ = 20. The

second row of Fig. 2 shows the denoised images using total

variation (J = JTV), where the value of λ has been tuned

manually to maximize the PSNR, for each image. This opti-

mal value of λ yields images where noise is still visible, while

some image details have disappeared, see e.g. the stripes of

the pants in image (f), and the pixel values tend to be clustered

into piecewise constant regions. The third row of Fig. 2 shows

the results with semi-local total variation (J = JSLTV). As

is visible in the images (i)–(l), the strong edges are sharp, but

the clustering and staircasing effects proper to total variation

have disappeared. Hence, the tradeoff between noise removal

and details preservation is better with SLTV than with TV.

3.2. Demosaicing

Another classical interpolation problem in imaging is de-

mosaicing, which consists in reconstructing a color image

x = [xR, xG, xB]
T with red (R), green (G), blue (B) chan-

nels, knowing only one of these three values at each pixel

location [13]. That is, Ax = y with y[k] = {xG[k] if k1 +
k2 is even, xR[k] else if k2 is even, xB[k] else}, ∀k ∈ Z

2.

Note that AA∗ = Id. In [14], the author proposed an exten-

sion of the total variation to color images as follows:

JTV(x) = µJTV(xL) + JTV(xC), (18)

where xC = xG/M + j.xR/B is the complex chrominance

field and xL, xG/M , xR/B are the channels of x expressed

Table 1. PSNR (in dB) for the demosaicing experiments over

the 24 images of the classical Kodak test set.

image TV SLTV

1 39.20 39.72

2 38.24 39.92

3 41.32 42.52

4 39.19 40.52

5 35.95 37.61

6 38.72 39.44

7 39.78 42.07

8 35.00 35.67

9 40.80 42.06

10 40.41 41.84

11 38.00 39.55

12 42.38 43.36

13 35.75 36.36

14 34.95 36.68

15 37.99 39.33

16 42.31 42.67

17 40.08 41.27

18 35.88 37.33

19 38.74 39.38

20 40.09 41.27

21 38.82 39.73

22 36.85 38.09

23 40.80 42.62

24 33.26 34.93

mean 38.52 39.75

in the luminance, green-magenta and red-blue chrominance

orthonormal basis [14]. The important parameter µ < 1 in

(18) ensures that the reconstructed image has its chrominance

channels smoother than its luminance channel, a known prop-

erty of natural images. It is straightforward to extend the def-

inition of the SLTV to color images, the same way as TV is

extended in (18). For the computations in the algorithms, one

can switch between the R,G,B and luminance,chrominance

bases, since this operation is unitary.

The results of solving (1) with J = JTV and JSLTV are

reported in Tab. 1. We used µ = 0.625. The large average

improvement of 1.2dB obtained with the SLTV over the TV

shows that the SLTV is a better regularization for the demo-

saicing problem.

We also considered the joint demosaicing-denoising prob-

lem, in which the mosaicked image is corrupted by AWGN,

with std. dev. 20. The image is reconstructed by solving (2).

One result is illustrated in Fig. 1. The visual quality of the im-

ages reconstructed with the TV and the SLTV is comparable,

but the latter is free from the piecewise constant clustering

effect of the TV. Moreover, the SLTV tends to give images

with more accurate colors, while with the TV, the colors are

desaturated, especially on small objects. This can be seen in

Fig. 1 on the blue rudder in the man’s hands, which appears

more blue in (c) than in (b).

4. CONCLUSION

We proposed the semi-local total variation (SLTV), as an

alternative to the total variation (TV) for regularization of

inverse problems in imaging. We have shown that with recent

primal-dual splitting methods, there is no difficulty in adapt-

ing an algorithm from the TV to the SLTV. The computational

cost with SLTV is higher, relatively to the size of the neigh-

borhood set Ω, but SLTV yields more pleasant images, where

the sharpness of edges is maintained without the typical



(a) Original Image (b) reconstructed with TV, 26.83dB (c) reconstructed with SLTV, 27.03dB

µ = 0.42, λ = 0.06 µ = 0.32, λ = 1.3.

Fig. 1. Joint demosaicing-denoising experiment on image 14 of the Kodak test base. The PSNR values correspond to the whole

image, not to the crop selected here. The parameters µ and λ were empirically optimized to maximize the PSNR. 100 iterations

of the algorithm were run.

clustering effect of TV.
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noisy

σ = 20
(a) (b) (c) (d)

denoised

JTV

(e) λ = 0.09, 27.03dB (f) λ = 0.09, 27.03dB (g) λ = 0.07, 28.88dB (h) λ = 0.07, 29.18dB

denoised

JSLTV

(i) λ = 2.7, 27.59dB (j) λ = 2.7, 27.59dB (k) λ = 2.4, 28.86dB (l) λ = 2.2, 29.47dB

Fig. 2. Denoising experiments using regularization with total variation and proposed semi-local total variation. For each

denoised image, 100 iterations of the proposed algorithm were run. The PSNR values correspond to the whole Barbara, Camera

and Boat, images, not to the crops selected here.


