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ABSTRACT
In this paper we propose a new algorithm to detect vowels in
a speech utterance and infer the rate at which speech was pro-
duced. To achieve this we determine a smooth trajectory that
corresponds to a high frequency energy envelope, modulated
by the low frequency energy content. Peak picking performed
on this trajectory gives an estimate of the number of vowels
in the utterance. To dispose of falsely detected vowels, a peak
pruning post-processing step is incorporated. Experimental
results show that the proposed algorithm is more accurate than
the two speech rate determination algorithms on which it was
inspired.

Index Terms— Speech rate determination, vowel detec-
tion

1. INTRODUCTION

Whenever speech is observed, people will have an opinion
about its rate. They might believe the observed speech is slow,
normal or fast. The quantification of the perceived speech
rate is a topic on which research has been done already. An
abstraction of a speech signal to its perceived rate could be
valuable for numerous reasons. Certain speech algorithms
could benefit from information of the rate of the incoming
speech by adapting the algorithmic details to the given rate.
One example is automatic speech recognition (ASR) [1]. An-
other field where speech rate is important is voice training.
Professional speakers, such as people working in call centers,
should produce speech at a correct rate in order to maximize
intelligibility and make the listening task as agreeable as pos-
sible. Speech rate training can also benefit persons suffering
from certain speech disorders. For instance, with a reduction
in speech rate, significant improvements in speech intelligi-
bility can be observed in persons with dysarthria [2].

Parts of the research reported on in this paper were performed in the
context of the CATRIS (TBM-80662) project, supported by the Flemish gov-
ernment agency for Innovation by Science and Technology (IWT).

Multiple efforts have been made to quantify speech rate.
When measuring the rate of speech, it is common practice to
count the number of instances of a specific phonetic unit that
are produced in a certain time span. Research has shown that
the production speed of syllables is a good representation of
the rhythm of speech [3]. That is why multiple speech rate
determination algorithms exist that rely on counting sylla-
bles, and usually achieve this by detecting vowel positions
in the acoustic speech signal. Many of these detection algo-
rithms rely on energy or loudness measurements (e.g. [4]),
sometimes complemented with verifications of periodicity
(e.g. [5]). Another approach would be to use ASR to get a
phonological representation of the utterance, from which the
number of syllables could easily be inferred. This approach
would, however, make the detection system more complex
and would render it language (and dialect) specific. Further-
more, as mentioned previously, speech rate determination as
a front-end processing step could increase the performance of
ASR, in which case it would make no sense to rely on ASR
to determine speech rate. A recognizer that simply classifies
speech units into broad phonetic classes could, on the other
hand, reduce the complexity and language dependence and
has been utilized to measure speech rate [6]. Numerous tech-
niques have been developed to detect vowels in an utterance
or to segment speech into vowel and non-vowel like units,
all of which could be used for the purpose of speech rate
determination.

During previous work we compared the performance of
8 different speech rate estimators [7], many of which were
based on sub-band energy envelope measurements for esti-
mating the number of vowels. In this paper, we propose a
further improvement in this class of speech rate estimation
algorithms, and we called the resulting algorithm the LFME
(Low Frequency Modulated Energy) algorithm. In section 2,
we briefly discuss some algorithms that are based on sub-band
energy envelope measurements and give the rationale for our
novel approach. In section 3, we propose our LFME algo-



rithm and we finally discuss its performance in section 4.

2. BACKGROUND

One of the first publications pertaining to the automatic mea-
surement of speech rate describes an algorithm called enrate
[8]. Enrate is the first spectral moment of the energy envelope
of speech and was shown to correlate with speech rate. Mor-
gan et al. [9] later on described an enhanced method based on
their enrate algorithm. They call this technique mrate. Mrate
is the mean of enrate and two peak counting methods. The
first peak counting is done on the energy envelope of the sig-
nal and the result is also a direct estimation of the speech rate
by itself. The second peak counting is executed on the point-
wise correlation y(n) of the energy envelopes of 4 different
band-pass signals (with band edges: 300, 800, 1500, 2500,
4000 Hz):

y(n) =
1

M

N−1∑
i=1

N∑
j=i+1

ei(n)ej(n) (1)

where ei represents the (compressed) energy envelope of
the ith sub-band signal. M = N(N − 1)/2 is the number
of unique pairs and N(= 4) is the number of sub-bands. It
should be noted that the peak counting on y(n) itself also rep-
resents an estimate for the number of vowels in the speech
signal. In [7], we referred to this method of speech rate esti-
mation as mpeakrate.

The Temporal Correlation and Selected Sub-band Corre-
lation method (tcssbc) [10] is very similar to mrate, but uti-
lizes 19 frequency bands and performs a time domain cross-
correlation prior to the point-wise correlation in Eq. 1. This
time domain correlation leads to a smoothing of the energy
envelopes. The point-wise correlation does not involve all 19
sub-band envelopes, N sub-band envelopes are selected for
this purpose. Counting the number of peaks in the resulting
trajectory gives an estimate of the number of vowels in the
speech signal.

In a comparative study [7] of 8 algorithms, including the
above algorithms and two vowel onset detection algorithms
( [11], [12]), we found that the tcssbc method outperformed
the other speech rate estimation techniques.

Tcssbc is clearly inspired by the mpeakrate technique.
There are two enhancements to tcssbc when compared to
mpeakrate: the smoothing of the energy envelopes and the
selection of sub-bands. While further investigating these two
methods, we noticed indications that the smoothing step is
the main reason for the superiority of the tcssbc method.
Based on this insight we developed the LFME speech rate
estimator, building on the mpeakrate method, in which we
introduce smoother energy envelopes, an altered version of
the point-wise correlation and a peak pruning post-processing
step.

3. LFME ALGORITHM

3.1. Peak picking

With mpeakrate, the determination of the sub-band energy en-
velopes is carried out by sending the signal through a filter-
bank, half-wave rectifying the sub-band signals, and subse-
quently filtering these rectified signals with a low-pass filter.
We, on the other hand, will compute the energy envelopes by
means of a DFT-filterbank:

ei(m) =
1

NfftNwin

ki
2∑

k=ki
1

wk |Xk(m)|2 , i = 0 . . . N − 1

(2)
where Xk(m) is the Short-Time Fourier Transform

(STFT) of the speech signal x(n). k represents the fre-
quency and m the time (frame) index. Nfft is the number
of DFT points and Nwin is the length of the analysis win-
dow, expressed in number of samples. wk are weights that
increase with increasing frequency to counteract the energy
declination due to the spectral slope. Xk(m) is a downsam-
pled bandpass version of x(n). Taking the squared amplitude
of Xk(m) gives us the energy contour of this analytic sub-
band signal. To end up with an energy contour ei(m) that
corresponds to a frequency bin region [ki1, k

i
2], we sum the

different energy contours |Xk(m)|2 for which the frequency
index k falls within this region. The resulting energy contour
will have about twice the bandwidth of the analysis window,
implying we can directly influence the amount of smoothing
through the window type and length.

Once the energy envelopes are calculated, we utilize them
to compute the following trajectory:

LFME(m) = e20(m)

N−1∑
i=1

ei(m) = e20(m)es(m) (3)

This formula is quite similar to Eq. 1. Instead of mul-
tiplying all band-combinations, however, we only multiply
the lowest frequency band energy envelope with a higher fre-
quency one. The new trajectory is an energy contour, mod-
ulated by the square of the low frequency energy, hence the
name LFME (Low Frequency Modulated Energy). The ra-
tionale behind this is that vowels always possess a great deal
of energy in the low frequency region. When a sound does
not show enough low frequency energy content, chances are
very slim it belongs to the class of vowels and the LFME will
take on a low value. For a reinforcement of this effect, we
squared the energy contour of the lowest band. As the digital
speech signal is scaled between [−1, 1], the energy contour
will never exceed 1 and the squaring will lead to a non-linear
compression. When the N−1 other frequency bands are cho-
sen in a way that typical positions of different vowel formants



fall within one of these bands, we can safely say that vow-
els will cause a significant amount of energy both in e0 and
in es. The low frequency energy of unvoiced consonants and
the high frequency energy of voiced consonants are, on the
other hand, typically too low to lead to a high LFME value.
Peak picking executed on this trajectory should thus give us
an estimate of the number of vowels in the speech signal.

3.2. Peak pruning

As vowels introduce peaks in the LFME trajectory, we can
perform peak counting on this contour to determine the num-
ber of vowels in the utterance. Of course, not all peaks cor-
respond to a single vowel. Other sounds can produce peaks,
and one vowel can generate more than one single peak. Small
peaks in the trajectory are most likely undesired ones and will
be discarded. This is achieved by measuring the height dif-
ference between the peak and the valley preceding it. When
this difference does not exceed a set threshold, the peak is
no longer considered to be an indication of a vowel position.
All other peaks are kept as vowel position candidates. We
will extract features at these positions to dispose of spurious
peaks that remain after the peak height thresholding. Figure
1 displays a flow-chart of all peak pruning decision steps.

Some algorithms use the voiced/unvoiced classification
of a PDA or zero-cross rate to exclude peaks caused by un-
voiced sounds. Practically, almost no peaks caused by un-
voiced sounds surpass the height threshold, as these sounds
do not possess enough low frequency energy. The only excep-
tions are clearly pronounced plosives. To cope with this, we
introduce a two-band energy ratio check. Since these prob-
lematic plosives typically show a rather flat spectrum, while
vowels possess a declining spectrum, we compare the low fre-
quency energy content to the mid and high frequency content
at the peak position mp1. We call the ratio of these energies
Er2b(mp1). If the ratio stays lower than a certain threshold,
we are probably not dealing with a vowel and the peak is dis-
carded.

One vowel can introduce multiple peaks. This is mainly
due to variations in amplitude within the vowel itself. This
issue of multiple peaks can be tackled by adopting the use
of a feature that describes the spectral energy distribution of
speech at a particular location, but is amplitude independent.
If the peak detection on the LFME trajectory gives two peaks
that are located close to each other, we can extract this feature
at the two peak locations and determine if the spectral distri-
butions at the two locations are similar. If a large similarity is
observed, this is a sign that the two peaks are probably caused
by the same vowel and the second peak might be a spurious
one.

The (amplitude independent) spectral distribution feature
we use for this purpose is a normalized energy envelope vec-
tor:

En(m) =
1∑N−1

j=0 ej(m)
(e0(m), e1(m), . . . , eN−1(m))

(4)
The dissimilarity in spectral distribution at the two peak

locations mp0 and mp1 can then be determined by computing
the Euclidean distance:

End(mp0,mp1) = ‖10log10En(mp1)− 10log10En(mp0)‖
(5)

When two peaks are located close together and the End

associated with the two peaks is smaller than a set threshold,
the two peaks are most probably caused by the same type of
vowel. It could, however, be that the two vowels are separated
by another phoneme, in which case the second peak should
not be discarded. To identify this scenario a second normal-
ized energy distance End(mp1,mv1) is extracted using the
valley location mv1 between the two peaks, i.e. where the
LFME takes on its lowest value. This allows us to track how
the energy distribution varies while moving from one peak
to the next and if the calculated distance End(mp1,mv1) is
large the second peak should be kept. Even if End(mp1,mv1)
is small and there is thus no considerable shift in spectral en-
ergy distribution, if there is a large rise in global signal energy
when going from the valley towards the peak, the speaker
most likely intended to produce two instances of the vowel
(with e.g. a glottal stop in between) and both peaks should
be retained nonetheless. So when End(mp1,mv1) is small,
we do one final check before we discard the second peak. We
compute the signal energy at the peak and valley location and
compute the ratio of these two energies Er(mp1,mv1).

The final output of the algorithm is an estimation of the
number of vowels in the speech signal. As a last step, we di-
vide this estimated number by the length of the speech signal
to arrive at the estimated speech rate in syllables/second.

4. RESULTS & DISCUSSION

In this section we elaborate on the evaluation of the proposed
algorithm. For the evaluation, we used a Dutch database
of read speech consisting of 648 utterances, uttered by 36
different speakers in clean conditions. All utterances in the
database are between 5 and 15 syllables long. The average
duration of an utterance is 2.75 seconds. Every speaker ut-
tered a different set of sentences. The sampling rate is 16
kHz. Before we could assess the performance of the algo-
rithm, an optimization of the parameters was required. The
level of smoothing of the LFME trajectory relies on one pa-
rameter: the length of the STFT window. The peak pruning
step depends on 6 threshold parameters. The other parameters
(the band edges ki and weights wk) were given a fixed value.
Comparable bands as the ones utilized by the mpeakrate
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Fig. 1. Peak pruning schematic

algorithm were used for the LFME calculation: e0 corre-
sponded to the energy contained in the band (50, 800)Hz,
while es reflected the energy in the (800, 4000)Hz region.
This band was further split up into 3 regions with band edges
800, 1500, 2500 and 4000Hz for the calculation of End. The
weights wk were chosen to counterbalance a spectral slope
of -6dB/octave and as such obtain a flattened spectrum. A
Hann analysis window was used for the calculation of the
STFT. We used half of the speakers (13) in the database for
the optimization, resulting in 324 utterances (The remaining
13 speakers were used for the evaluation of the algorithm).
The two most influential parameters that were optimized are
the window length and the peak height threshold. We op-
timized these parameters separately from the other 5 peak
pruning threshold parameters. We first used an automatic
speech recognizer in forced alignment mode to identify the
vowel borders. ASR is, however, not flawless, so the number
of vowels in each utterance was also manually determined by
a human listener and this reference is used to optimize the
two most important parameters. This reference number is not
perfect, as human listeners tend to overlook added sounds
(mostly ’schwa’) and sometimes do perceive sounds that are
absent, but are expected to be there. Still, we believe it was
much wiser to use this manual reference to optimize the two
most important parameters, as the vowel borders given by
ASR would not be reliable enough and, additionally, forced
alignment does not account for any unintentionally added or
omitted vowels in the utterance.

We first computed the LFME trajectories using a specific
window length, identified all peaks and only retained those
that were higher than a certain peak height threshold. At the
positions corresponding to these peaks, we extracted the 5 re-

maining peak pruning features and the type of peak; the peak
was either a desired peak or a spurious peak. A spurious peak
is a peak caused by a non-vowel sound or the non-first peak
occurring within a vowel segment. All peaks that occurred
first in a vowel segment, were classified as desired peaks. The
vowel borders that were used for this purpose are the ones as
identified by ASR.

The 5 peak pruning thresholds were optimized using
a pattern-search algorithm in such a way that the sum of
the number of retained spurious peaks and the number of
discarded desired peaks is minimized. We then used these
thresholds to optimize the window length and peak height
threshold. We ran the full algorithm (including all peak prun-
ing steps) on the optimization utterances using a fixed grid of
window length and peak height threshold combinations, each
giving an estimated number of syllables. We then searched
for the combination that minimized the RMS error:

ERMS =

√√√√ 1

Nutt

Nutt∑
u=1

(
sylld(u)− syllr(u)

syllr(u)

)2

(6)

where sylld is the number of detected syllables, syllr is
the reference number of syllables as determined by the human
listener, u is the utterance number and Nutt is the number
of utterances in the optimization database. Minimizing this
RMS error does not optimize the accuracy of vowel detec-
tion, rather it optimizes the detection of the number of vowels
in the whole utterance. The error of missed peaks that are
compensated for by the detection of false peaks is not consid-
ered. We still chose to use Eq. 6 since we wanted to base the
optimization of the most influential parameters on the manual
determination of the number of vowels and not on ASR. Ad-
ditionally, we would like to note that the LFME algorithm as
we use it, is intended for speech rate determination, and that a
speech rate measurement is not influenced by a compensation
of missed vowels by falsely detected vowels.

After the optimization of the window length and height
threshold, the whole process is repeated, starting with com-
puting new LFME trajectories with the optimized window
length and rejecting peaks according to the optimized peak
height threshold, after which the peak pruning thresholds, and
subsequently, the window length and peak height threshold
were re-optimized. We continued this process until stable op-
timized parameter values were obtained.

We compared the performance of the proposed LFME al-
gorithm to that of the mpeakrate part of the mrate algorithm,
and to the performance of the tcssbc algorithm. These other
2 methods also involve counting the number of peaks in a
feature trajectory. The peak height threshold that determined
which peaks to keep and the smoothing parameter used in the
tcssbc method were optimized in the same way as done for
the LFME method, i.e. by determining the parameter combi-
nation that minimized the RMS error of Eq. 6.



ERMS corr
tcssbc 0.165 0.75

mpeakrate 0.279 0.49
mpeakrate dft 0.162 0.77
LFME base 0.143 0.81

LFME 0.132 0.83

Table 1. Experimental results

The dissimilarities between the proposed method and
mpeakrate lie in the smoothing of the energy contours, the
calculation of the feature trajectory and the post-processing
peak pruning. In order to systematically investigate the influ-
ence of each of these aspects, we also look at two methods
that are a combination of these two techniques: we also
consider the mpeakrate method where we used a DFT to
calculate smoothed energy envelopes using an optimized
window length (mpeakrate dft) and we investigate the LFME
method with (LFME) and without (LFME base) the 5 last
peak pruning steps.

Table 1 shows for every considered method the RMS er-
ror on the number of detected syllables, and the correlation
coefficient between the calculated speech rate and the refer-
ence speech rate. For the calculations of these figures we used
the remaining 13 speakers (324 utterances) that were not used
during optimization. When using the same energy envelope
sampling rate, LFME typically took about 40% and 70% of
the computation times required by tcssbc and mpeakrate re-
spectively. We can see that as we move from mpeakrate to
LFME, by first introducing smoothing, then the LFME trajec-
tory and, finally, additional peak pruning, with every step the
RMS error reduces and the correlation coefficient increases.
From Table 1 it is also clear that if we introduce smooth-
ing, mpeakrate performs comparable to tcssbc, indicating that
smoothing is the main reason for the superiority of the tcssbc
trajectory, and not so much the selection of sub-bands.

5. CONCLUSION

In this paper we introduced the LFME algorithm. The con-
ducted experiments showed that peak picking performed on
the LFME trajectory results in a better speech rate estima-
tion than when it is done on the mpeakrate or tcssbc trajec-
tories. The introduction of additional peak pruning can fur-
ther enhance the estimation process. The LFME algorithm
not only outperforms the tcssbc algorithm, which from a pre-
vious study was believed to be the best performing technique,
but is in addition less demanding in terms of computational
complexity. Even though we only performed experiments us-
ing Dutch speech, we expect the algorithm to also work with
other Western European languages, which share the same syl-
labic structure as Dutch, since energy based vowel detection
is generally believed to be largely language independent.
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