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ABSTRACT

In this paper, we present a distributed algorithm for network-
wide signal subspace estimation in a fully-connected wireless
sensor network with multi-sensor nodes. We consider sce-
narios where the noise field is spatially correlated between
the nodes. Therefore, rather than an eigenvalue decomposi-
tion (EVD-) based approach, we apply a generalized EVD
(GEVD-) based approach which allows to directly incorporate
the (estimated) noise covariance. Furthermore, the GEVD is
also immune to unknown per-channel scalings. We first use
a distributed algorithm to estimate the principal generalized
eigenvectors (GEVCs) of a pair of network-wide sensor sig-
nal covariance matrices, without explicitly constructing these
matrices, as this would inherently require data centralization.
We then apply a transformation at each node to extract the
actual signal subspace estimate from the principal GEVCs.
The resulting distributed algorithm can reduce the per-node
communication and computational cost. We demonstrate the
effectiveness of the algorithm by means of numerical simula-
tions.

Index Terms— Wireless sensor network (WSN), dis-
tributed estimation, signal subspace estimation, generalized
eigenvalue decomposition (GEVD)
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1. INTRODUCTION

Signal subspace estimation plays an important role in array
processing algorithms [1]. For instance the direction-of-
arrival (DOA) estimation performance of algorithms like
MUSIC [2] or ESPRIT [3] strongly depends upon a sig-
nal subspace estimation. Moreover, in the field of adaptive
beamforming , an imprecise signal subspace estimation often
results in a significant performance degradation [4].

We consider the problem of network-wide signal sub-
space estimation in a fully-connected wireless sensor net-
work (WSN), with multi-sensor nodes, and where the noise
field is possibly spatially correlated. The per-node signal
subspace can be estimated from the local sensor signal co-
variance matrix without signal exchange between nodes.
However, if also the relative geometry between the nodes
has to be captured in the signal subspace, the network-wide
signal subspace should be estimated from the network-wide
sensor signal covariance matrix. Furthermore, even where
this relative geometry is irrelevant, the computation of the
network-wide signal subspace may provide better estimates
of the per-node signal subspaces, because more correlation
structure can be exploited (as demonstrated in [5], and in the
simulations in this paper). To estimate the network-wide sig-
nal subspace, one option is to let each node transmit its sensor
observations to a fusion center (FC) where the data is then
processed in a centralized fashion. However this centraliza-
tion of data requires the availability of a sufficiently powerful
FC and demands a significant per-node communication cost.
In this paper we propose an alternative distributed algorithm
to obtain the centralized estimation performance, without ex-
plicitly constructing a network-wide sensor signal covariance
matrix.

To estimate the network-wide signal subspace in a dis-
tributed fashion, an eigenvalue decomposition- (EVD-) based
approach was proposed in [6], [7]. However, the GEVD is
better suited for scenarios with spatially correlated noise, as-
suming that the noise covariance is known a-priori or can be



estimated as explained in this paper, e.g., based on “noise-
only” signal segments. Furthermore, the GEVD is immune to
a scaling of the individual sensor observations, e.g., if the sen-
sor gain is not calibrated between nodes. Hence, we first esti-
mate the S network-wide principal generalized eigenvectors
(GEVCs) using the distributed adaptive covariance-matrix
generalized eigenvector estimation (DACGEE) algorithm [8],
where S is the a-priori defined dimension of the signal sub-
space. However, while the eigenvectors of a sensor signal
covariance matrix may directly correspond to the underlying
signal subspace, this is not the case for the GEVCs of a pair of
covariance matrices, i.e., the GEVCs cannot directly be used
as a signal subspace estimate. The actual signal subspace can
be extracted by the inversion of a matrix containing all the
GEVCs. However, as the DACGEE algorithm only extracts
S principal GEVCs, the latter is not possible in a distributed
fashion. Therefore, we propose a technique that allows to
transform the estimated principal GEVCs into a set of basis
vectors that span the actual signal subspace, i.e., without the
need to also compute the other GEVCs.

The paper is organized as follows. The problem state-
ment and data model are presented in Section 2. Centralized
GEVD-based signal subspace estimation is described in Sec-
tion 3. The proposed distributed algorithm is presented in
Section 4. The simulation results are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. PROBLEM STATEMENT AND DATA MODEL
We consider a WSN with K multi-sensor nodes in which
each node k ∈ K = {1, . . . ,K} collects observations of a
complex-valued Mk-channel sensor signal uk. Note that this
also allows for a hierarchical WSN whereK master nodes re-
ceive sensor observations from Mk slave nodes with a single
sensor. The topology of the network is assumed to be fully-
connected which means that data broadcast by a node can be
received by all other K − 1 nodes in the network. The sen-
sor signal uk consists of a mixture of S target source signals
and additive noise, which may be spatially correlated between
nodes. Hence uk can be modeled as

uk = Aks + nk (1)

where s is an S-channel signal containing S target source
signals, Ak = [ak1 · · ·akS ] is a static (or slowly varying)
Mk × S steering matrix where aks (s = 1, · · · , S) is the
so-called steering vector (SV) from source s to the sensors
of node k, and nk is the additive noise. The sensor signal
uk is assumed to satisfy short-term stationarity and ergodic-
ity conditions. By stacking all uk’s and nk’s, we obtain the
network-wideM -channel sensor signal u and n, respectively.
Likewise, we define the M ×S matrix A = [a1 · · ·aS ] as the
stacked version of all Ak’s such that

u = As + n. (2)

In this paper we consider the problem of estimating an
S-dimensional basis that for the so-called signal subspace,

i.e., the column space of the network-wide steering matrix
A, based on a GEVD of the covariance matrices of u and
n. The signal subspace is estimated without explicitly con-
structing these covariance matrices, as this would require cen-
tralization of all the sensor observations. Instead the nodes
will only exchange S-channel sensor observations, which re-
sults in a compression factor of Mk/S at node k (assuming
Mk ≥ S). We assume that S is known or estimated a-priori
(as in [2], [6], [7]). It is noted that, if S = 1, the problem
reduces to an SV estimation problem, where we estimate a1

up to a scaling ambiguity.

3. CENTRALIZED GEVD-BASED SIGNAL
SUBSPACE ESTIMATION

In this section, we first explain how the signal subspace can
be estimated by means of the GEVD of the covariance ma-
trices of u and n. Without loss of generality (w.l.o.g.), we
assume that u is zero-mean which possibly requires a mean
subtraction preprocessing step. The network-wide sensor sig-
nal correlation matrix is then defined as

Ruu = E{uuH} (3)

where E{·} denotes the expected value operator, and the su-
perscript H denotes the conjugate transpose operator. The
exact sensor signal covariance matrix as defined in (3) is of-
ten not available in practice, but can be estimated via sample
averaging. To this end, we define theM ×N observation ma-
trix U, where each column corresponds to an observation of
u at a certain time instant, such that Ruu can be approximated
as

Ruu ≈
1

N
UUH (4)

and when having an infinitely long observation window we
can write Ruu = limN→∞

1
NUUH .

We also define the network-wide sensor noise covariance
matrix Rnn = E{nnH} where it is assumed that Rnn is ei-
ther known a-priori or can be estimated from noise-only seg-
ments in the sensor observations (similar to (4)). The latter
can be performed in applications such as speech enhancement
where Ruu and Rnn can be estimated during “speech-and-
noise” and “noise-only” segments, respectively, which can be
distinguished by means of a voice activity detection (VAD)
mechanism [9].

In order to perform a GEVD of the ordered matrix pair
(Ruu,Rnn), each GEVC and its corresponding generalized
eigenvalue (GEVL), xm and λm (m = 1 · · ·M), respectively,
must be computed such that Ruuxm = λmRnnxm [10], or
equivalently

RuuX = RnnXΛ (5)

where X = [x1...xM ] and Λ = diag{λ1 · · ·λM}. Note that
this can be written as a non-symmetric EVD as

R−1
nnRuu = XΛX−1 (6)

if Rnn is invertible. In the sequel, we assume w.l.o.g. that
the GEVLs in Λ are sorted in descending order. Since the



GEVCs are defined up to a scaling, we assume w.l.o.g. that
all xm’s are scaled such that xHmRnnxm = 1.

Note that the GEVD is equivalent to a joint diagonaliza-
tion of Ruu and Rnn, i.e., it can be verified from (6) that

Ruu = QΣQH (7)

Rnn = QΓQH (8)

where Q = X−H is a full-rank M ×M matrix (not necessar-
ily orthogonal), and where Σ = diag{σ1 · · ·σM} and Γ =
diag{γ1 · · · γM} are diagonal matrices. Note that (6) then
implies that the GEVLs are equal to Λ = diag{σ1

γ1
· · · σM

γM
}.

From (2) and (8), it follows that

Ruu = AΠAH + Rnn = AΠAH + QΓQH (9)

where Π = diag{P1, ..., PS} with Ps the power of target
source signal s. With (7), it follows that

AΠAH = Q
(
Σ− Γ

)
QH . (10)

Since Q is full rank, and since the left-hand side of (10) con-
sists of a positive semi-definite matrix with rank S, we see
that Σ−Γ contains only S non-zero diagonal entries. There-
fore, the first S GEVLs are larger than one (σm > γm), and
others are all equal to 1 (σm = γm). The first S columns
of Q must then span the same S-dimensional subspace as the
columns of A, i.e., define the signal subspace.

We define X̂ = [x1 · · ·xS ] as an M × S matrix where
the columns are the principal GEVCs corresponding to the S
largest GEVLs of (Ruu,Rnn), i.e., the first S columns of X.
Similarly, we define Q̂ as the M × S matrix containing the
first S columns of Q, which span the signal subspace. In the
sequel, we explain how the columns of Q̂ can be estimated in
a distributed fashion.

It is reiterated that the GEVD-based signal subspace es-
timation allows to directly incorporate the (estimated) noise
covariance matrix, which is not the case in an EVD-based ap-
proach. In addition, the GEVD is also immune to unknown
per-channel scalings (e.g., due to lack of sensor calibration
between nodes), which is explained as follows. Applying a
random scaling to (some) channels of uk at node k results in
a similar scaling of the corresponding rows and columns of
the network-wide sensor signal correlation matrix Ruu. This
scaling has an influence on the entire eigenstructure of Ruu,
i.e., all coefficients of all its eigenvectors are affected. This
is an undesirable effect if the eigenvectors are used to esti-
mate the signal subspace or SV. Indeed, a simple scaling of
the channels in one node should not affect the signal subspace
or SV estimate in other nodes. However, it can be shown that
the GEVD of (Ruu,Rnn) does not have this effect, i.e., the
same scaling will only affect the coefficients in the GEVCs
corresponding to the scaled channels at the node k, i.e., the
scaling remains localized and does not spread out to other
GEVC coefficients. As a result, the signal subspace or SV
estimate at others nodes will not be affected.

4. DISTRIBUTED GEVD-BASED SIGNAL SUBSPACE
ESTIMATION

In a WSN, a node k has only access to its own Mk-channel
sensor signal uk corresponding to Mk rows of the observa-
tion matrix U in (4) and hence can only estimate anMk×Mk

submatrix of Ruu and Rnn. This seems to hamper the com-
putation of Q̂, unless all the sensor observations are central-
ized to estimate the network-wide Ruu and Rnn. In this sec-
tion, we explain how Q̂ can be estimated and updated (in a
block-adaptive fashion) while reducing the per-node commu-
nication cost by a factor Mk/S (assuming Mk ≥ S). To
this end, we use the DACGEE algorithm [8] to first estimate
X̂ in a distributed fashion. We then explain how the sub-
space spanned by the columns of Q̂ can be computed from X̂,
without performing the explicit matrix inversion Q = X−H ,
which would otherwise also require the other GEVCs to con-
struct the full matrix X.

4.1. DACGEE algorithm
The goal of the DACGEE algorithm is to estimate and update
X̂ in a distributed fashion. Here we review the DACGEE
algorithm only briefly, yet the reader can find the details of
the algorithm derivation and convergence proofs in [8].

Defining i as the iteration index, we define X̂i as the
estimate of X̂ at iteration i (or in the i-th block of N sen-
sor observations). We also define the partitioning X̂i =
[X̂i T

1 · · · X̂i T
K ]T in which X̂i

k is the part that corresponds to
node k. Hence we can also write X̂i Hu =

∑
k∈K X̂i H

k uk.
Each node k only updates the submatrix X̂i

k, and then uses it
to compress its Mk-channel sensor signal into the S-channel
signal

uik = X̂i H
k uk . (11)

We assume for the sake of an easy exposition that S < Mk,
∀k ∈ K, yet if at a node k, S ≥Mk, node kmerely broadcasts
its sensor observations uk, in which case no compression is
achieved at node k. A node k broadcasts N observations of
uik in iteration i where all other nodes can collect them (fully-
connected topology). Therefore a node k has access to the
following signal and its corresponding covariance matrix:

ũik =

[
uk
ui−k

]
=⇒ Ri

ũkũk
= E{ũikũi Hk } (12)

where ui−k = [ui T1 . . . ui Tk−1 ui Tk+1 . . . ui TK ]T . In a similar
way, we can define Ri

ñkñk
, which can be estimated from ũik

during “noise-only” segments1. The nodes then sequentially
compute the reduced-dimension GEVD of (Ri

ũkũk
,Ri

ñkñk
)

and use the result to update X̂i
k. The DACGEE algorithm

is summarized in Table 1 (ignore step 5 for the time being).

1If the network-wide Rnn is known a-priori , one can also compute
Ri

ñkñk
directly by means of the compression matrices Xi

k from the other
nodes.



Note that the token assigning the updating node q is mov-
ing in a round-robin fashion and that the updates happen in a
block-adaptive fashion, in blocks of N observations. In [8], it
has been shown that the DACGEE algorithm converges to the
centralized solution, i.e., limi→∞ X̂i = X̂. It is noted that
this only holds perfectly if iterations are performed with one
block of N observations. In practice, iterations are spread out
over different blocks, in which case the convergence and op-
timality is only approximately satisfied due to discrepancies
in the sensor signal and noise covariance matrix estimates in
the different blocks.

4.2. Signal subspace estimation
In this Section we propose a technique to transform X̂ to Q̂
(up to a column scaling), i.e., to estimate Q̂ from X̂ without
explicitly relying on the full X and computing Q = X−H .
We define the S-channel signal

u = X̂Hu . (13)

When considering the covariance between u and u, we have
that

Ruū = E{uuH} = E{uuHX̂} = RuuX̂ . (14)

Using this with (7) and the fact that Q = X−H , we find

Ruū = QΣQHQ−HES = Q̂Σ̂ (15)

with Σ̂ = diag{σ1 · · ·σS} and with ES = [Is 0], where Is
denotes the S × S identity matrix and 0 is an all-zero ma-
trix. The diagonal matrix Σ̂ only scales the columns of Q̂
and hence does not affect its column space. This shows that
Ruū defines a matrix for which the columns span the same
subspace as the columns of Q̂, which is sufficient for our ac-
tual goal, i.e., estimating a basis for the column space of A in
(2).

Ruū can be estimated based on per-node operations with-
out any additional data exchange. Indeed, ū can be con-
structed at each node as

ui =
∑
k∈K

uik. (16)

Node k can then estimate its part of Ruū = E{uuH} as

Ri
ukū

= E{ukuiH} ≈
1

N
UkU

iH
(17)

where Uk and U
i

areMk×N and S×N matrices containing
N observations of uk and ui in their columns, respectively.
Stacking all Ri

ukū
’s yields an estimate Ri

uū for Ruū, i.e., an
estimate of the signal subspace. Note that, due to the fact that
limi→∞ X̂i = X̂, we also have that

lim
i→∞

Ri
uū = Ruū. (18)

The resulting algorithm is described in Table 1.

Table 1. Distributed GEVD-based signal subspace estimation

1. Set i← 0, q ← 1, and initialize all X̂0
k , ∀ k ∈ K, with random

entries.

2. Each node k ∈ K broadcasts N new compressed observations
ui
k[j] = X̂i H

k uk[iN + j] (where j = 1 . . . N ).

3. At node q:

• Estimate Ri
ũq ũq

and Ri
ñqñq

similar to (4).

• Compute the columns of X̃i+1
q as the S principal GEVCs

of (Ri
ũq ũq

,Ri
ñqñq

).

• Define P = S(K − 1) and partition X̃i+1
q as

X̂i+1
q =

[
IMk

OMk×P

]
X̃i+1

q (19)

G−q =
[
OP×Mk

IS(K−1)

]
X̃i+1

q (20)

and broadcast G−q and ui,new
q [j] = X̂i+1 H

q uq [iN+ j]
to all the other nodes.

4. Each node k ∈ K\{q} updates

X̂i+1
k = X̂i

kGk (21)

where G−q =
[
GT

1 . . . GT
q−1 GT

q+1 . . . GT
K

]T
.

5. Each node k ∈ K computes ui =
∑

k∈K\{q} u
i
k + ui,new

q

locally and updates Ri
ukū

as in (17).

6. i← i+ 1 and q ← (q mod K) + 1.

7. Return to step 2.

5. SIMULATION RESULTS

In this Section, we demonstrate the performance of the pro-
posed distributed signal subspace estimation via numerical
Monte-Carlo (MC) simulations, and compare it with the “cen-
tralized” and the “isolated” approach. The latter approach
corresponds to each node only having access to its own Mk-
channel sensor signal and hence there is no cooperation.

A different simulation scenario with K = 10 nodes is
created in each MC run where the data model described in
(1)-(2) is considered. Each node k observes a 15-channel
(Mk = 15) stochastic sensor signal uk, ∀k ∈ K. In total
10 localized sources are assumed in each MC scenario, from
which S are considered as the target sources and the remain-
ing 10 − S sources are treated as noise sources (we simulate
for different values of S ). The S target sources have an on-
off behavior, while the other 10− S sources are continuously
active. The network-wide noise signal n can be described as
n = Bz + v where B is the steering matrix corresponding
to the noise sources, z contains the 10 − S noise source sig-
nals, and v models the spatially uncorrelated noise signals.
The network-wide steering matrices A and B are static ma-
trices with dimensions 150× S and 150× (10− S) , respec-
tively, in which the entries are drawn from a uniform distribu-
tion over the interval [−0.5; 0.5]. s and z are S-channel and
(10 − S)-channel stochastic source signals from which the
observations are independently drawn from a uniform distri-
bution over the interval [−0.5; 0.5]. Moreover, v is a 150-
channel stochastic signal from which the observations are in-
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Fig. 1. Single target source scenario (SV estimation)

dependently drawn from a uniform distribution over the inter-
val [−

√
0.1/2;

√
0.1/2].

Fig. 1 illustrates the results for the case where S = 1,
i.e., a single target source scenario, averaged over 200 MC
runs. In the upper part of this figure the mean squared errors
(MSEs) between the entries of the exact SV a1 and the SV
estimate in the isolated approach, centralized approach and
the proposed distributed algorithm are shown over the differ-
ent iterations of the algorithm. Note that a normalization is
performed, as well as a compensation for the sign ambiguity,
before computing the MSE. As can be seen, the SV estima-
tion obtained with the distributed algorithm converges to the
SV estimation obtained by the centralized approach, which
is significantly better than the isolated approach. The bottom
part of Fig. 1 illustrates the MSE between the entries of the
centralized GEVC X̂ and its DACGEE-based estimate X̂i.
Comparing these figures demonstrates that the distributed SV
estimation converges faster than the principal GEVC estima-
tion in the DACGEE algorithm.

To evaluate the performance when S ≥ 1, we compute
the largest canonical angle (principal angle) between the true
steering matrix Ak and its corresponding signal subspace es-
timate Ri

ukū
at each node k. Fig. 2 shows the averaged

principal angles for different values of S over the different
iterations of the distributed algorithm. It is again observed
that cooperation (either centralized or distributed) improves
the signal subspace estimate. It is also observed that the es-
timate obtained with the distributed algorithm converges to
the estimate obtained with the centralized approach, where
the convergence speed improves when S increases. This fact
relates to the convergence speed of the DACGEE algorithm
which as disscussed in [8], is faster with a larger S.

6. CONCLUSION

In this paper, we have proposed a distributed algorithm for
network-wide signal subspace in a fully-connected WSN.
Rather than a standard EVD-based approach, we have ap-
plied a GEVD-based approach which not only allows us to
directly incorporate the (estimated) noise covariance matrix,
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Fig. 2. Multiple target sources (signal subspace estimation)

but which is also immune to unknown per-channel scalings.
We have used the DACGEE algorithm to first compute the
principal GEVCs, from which a basis estimate for the signal
subspace is then extracted (without relying on the full set of
GEVCs). We have shown that the estimates obtained with
the proposed distributed algorithm converges to the estimates
obtained with the centralized approach. The effectiveness
of our algorithm has been demonstrated via numerical MC
simulations.
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