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ABSTRACT

Nonnegative Matrix Factorization (NMF) is a well suited and
widely used method for monaural sound source separation. It
has been shown, that an additional cost term supporting tem-
poral continuity can improve the separation quality [1]. We
extend this model by adding a cost term, that penalizes large
variations in the spectral dimension. We propose two different
cost terms for this purpose and also propose a new cost term
for temporal continuity. We evaluate these cost terms on diffe-
rent mixtures of samples of pitched instruments, drum sounds
and other acoustical signals. Our results show, that penalizing
large spectral variations can improve separation quality. The
results also show, that our alternative temporal continuity cost
term leads to better separation results than the temporal con-
tinuity cost term proposed in [1].

Index Terms— audio source separation, nonnegative ma-
trix factorization

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a frequently used
method in audio source separation, e.g. [2, 3]. It was intro-
duced by Paatero [4], but only became popular after Lee and
Seung published efficient algorithms for its computation [5].
NMF is able to factorize audio signals into a specified number
of components which correspond to individual sound events.
These events can be assigned to the original sources by clus-
tering, resulting in estimated separated sources.

As NMF was not originally developed for source separation,
there are various options to extend it, to better adapt it to the
task of audio source separation. Several extensions have been
proposed, some using convolutive bases instead of multipli-
cative ones [6, 7], others extending the matrix factorization
model to a tensor factorization model, to separate multichan-
nel recordings [8]. Yet others introduce additonal constraints
such as sparsity or temporal continuity [1, 9]. An overview
over different versions of NMF can be found in [10].

In this paper we investigate an extension that adds a tempo-
ral continuity constraint to NMF. Based on this idea, we pro-
pose constraints supporting spectral continuity and also pro-

pose a new temporal continuity constraint. Our results show,
that a spectral continuity constraint can be beneficial for audio
source separation and that our alternative temporal continuity
constraint results in better separation than the temporal conti-
nuity criterion proposed in [1]. We also show, that combining
spectral and temporal constraints can be beneficial.

The paper is structured as follows: In Section 2, we provi-
de basic information about NMF, the application of NMF in
source separation and the temporal continuity criterion pro-
posed in [1]. In Section 3, we propose constraints for spectral
continuity and introduce our alternative temporal continuity
term. In Section 4 we present our experimental results. Final-
ly, in Section 5, we give our conclusions.

2. FUNDAMENTALS

2.1. Nonnegative Matrix Factorization

NMF approximates a nonnegative matrix X of size K x N
by a product of two nonnegative matrices B and G

X ~ X = BG, (1)

with B of size K x I and G of size I x N. I is a user defined
parameter, which is usually chosen smaller than K and N.

The matrices B and G are iteratively calculated by mini-
mizing an adequat distance function ¢(B, G) between X and
X. Commonly used distance functions are the Euclidean di-
stance, the Kullback-Leibler (KL) divergence and the Itakura-
Saito (IS) distance. Lee and Seung [5] introduced efficient
multiplicative update rules for the square of the Euclidean
distance as well as for the KL divergence, resulting in con-
vergence to a local minimum of the distance function. These
update rules can be calculated using the gradient of ¢(B, G)
with respect to B,

Vee(B,G) = Vi;¢(B,G) — Vge(B,G)  (2)

where VEe(B, G) and Vze(B, G) are elementwise nonne-
gative terms of the gradient. Aquivalently, Vgc(B, G) is the
gradient with respect to G. The update rules are

Vge(B,G)

B+~ B®
Vie(B,G)

3)
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Fig. 1: Idealized illustration of the magnitude spectrogram of
one harmonic note and one percussive tone.
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Fig. 2: Example of correct factorization with NMF
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where ® denotes elementwise multiplication and the divisi-
ons are also elementwise. For the methods presented in this-
paper, this generalized formulation of the update rules is suffi-
cient. However, the exact update rules for KL-divergence and
squared Euclidean distance can be found in [5] and for the
IS-distance in [10].

G+ G® “

2.2. Source separation using NMF

To use NMF for source separation, the time signal x, con-
sisting of M sources s,,, first has to be transformed to time-
frequency domain using short time Fourier transform (STFT).
This results in a complex valued spectrogram X, which has a
spectral and a temporal dimension. The NMF can be applied
to the magnitude X = |X| of this spectrogram for audio sour-
ce separation. Figures 1 and 2 illustrate this procedure. Figu-
re 1 shows an idealized magnitude spectrogram of a mixture
of one harmonic note (horizontal structure) and one percus-
sive tone (vertical structure) for M = 2. Figure 2 shows the
result of factorization of this mixture using NMF with [ = 2.
The matrices B (on the left) and G (on top) are the result
of the NMF. The columns of B (these vectors will from now
on be denoted b;) capture the spectral shape of the acoustical
events and can therefore be interpreted as spectral bases. The
vectors g; (the rows of the matrix G) can be interpreted as
temporal activation vectors. The matrices Ci = b,;g; can be
interpreted as spectrograms of individual acoustical events.

X = > C, is only an approximation for X. However, it is
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Fig. 3: Examples of incorrect factorizations with NMF

desirable that the factorized spectrograms exactly sum up to
the original spectrogram X. This is done in a filtering step,
which is also used to restore phase, using the phase of the

mixture:
C=Xo| ). 5)
> G

This Wiener-like filtering is a frequently used postprocessing
step of the results of the NMF [3], [11].

In a more complex mixture, I would have to be chosen cor-
responding to the number of the acoustical events in the mix-
ture. Usually [ is higher than the number of sources M, the-
refore the resulting spectrograms Ql have to be clustered to
the melodies of the original sources. This is done in a cluste-
ring step, resulting in the estimated spectrograms Sm for the
original sources.

These spectrograms are then transformed into time domain
by inverse short-time Fourier transform (ISTFT). This step
results in the estimations for the original sources in time do-
main S,,,.

2.3. NMF with temporal continuity

The results of the NMF differ, depending on the initial ele-
ments of B and G, because the NMF only leads to a local
minimum of the distance function. This can lead to problems:
For example, the spectrogram in Figure 2 could also be facto-
rized incorrectly, as shown in Figure 3. In these examples, the
overlapping points of the two sources are assigned incorrect-
ly, leading to gaps and peaks either in the temporal activation
vector of the harmonic source, or the spectral basis vector of
the percussive source.

To prevent this unwanted result, Virtanen proposed to add an
additional temporal continuity term to the cost function of the
NMF [1]. With this addition, the cost term to be minimized
transforms to

¢(B,G) = (B, G) + azce(G), (6)

where ¢.(B,G) ist a reconstruction error term (e.g. KL-
divergence), ¢;(G) is the temporal continuity term and vy is
a weight to adjust the influence of the temporal continuity



term. For oy = 0 this model equals the standard NMF.
The update rule for G transforms to

Vaer(B,G)+ o Ve (G)
V& (B,G) + Ve (G)'

G+—G® @)
while the update term for B stays the same as in Equation (3).
The temporal continuity term proposed by Virtanen is a tem-
poral squared difference (TSD) cost term, which can be cal-
culated as

— Gn-1,1)% (8)

I N
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with o; = /(1/N) Zﬁ;l g7 ; being the standard deviation

of each component <. g, ; denotes one element of the matrix
G at indizes n and . The negative and positive gradient terms
of this cost function are
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3. PROPOSED CONTINUITY TERMS

The NMF with temporal continuity favors factorizations with
continuous temporal activation vectors. This way temporal
gaps as in Figure 3(a) or temporal peaks as in Figure 3(b) are
circumvented. These problems usually only occur for harmo-
nic components. While for harmonic components temporal
continuity and spectral discontinuity can be assumed, spectral
components usually show a spectral continuity and temporal
discontinuity. Thus, gaps and peaks also occur in the spectral
vectors b; for percussive components (see Fig. 3). Therefore,
we propose to use an additional cost term favoring continuous
spectral basis vectors.

With this addition, the cost of Equation (6) transforms to

¢(B,G) = ¢ (B, G) + arct(G) + ase5(B), an

where ¢;(B) is a spectral continuity term and « is a weight
to adjust the influence of the spectral continuity term. The
update rule for B transforms to

Vger (B, G) + a;Vges(B)

B+~ B®
Vier (B, G) + asVies(B)

; 12)

while the update term for G stays the same as in Equation (7).

3.1. Spectral continuity terms

We propose two differently motivated terms for spectral con-
tinuity.

3.1.1. Spectral squared difference

The spectral squared difference (SSD) term is motivated by
Virtanens TSD (Eq. (8)). Aquivalently to this term, the pro-
posed SSD term is

—bik-1)%, (13)

with o; = 4/ (1/K) Zszl b? ; being the standard deviation

of each component . The negative and positive gradient terms
of this cost function, [Vzcs(B)]x,; and [Vges(B)]k,; can be
calculated equivalently to Equations (9) and (10).

3.1.2. Spectral flatness

The spectral flatness (SF) term is motivated by the MPEG-
7 [12] spectral flatness descriptor, which estimates a measure
for spectral flatness as the ratio between the geometric and
the arithmetic mean of spectral power coefficients. Using the
spectral flatness as cost term ¢;(B) would mean that flatness
is penalized, thus leading to a sparseness criteria (see [9]). As
we want to favor flat basis vectors, we take the inverse of the
spectral flatness descriptor as cost function. The proposed SF
term is

(14)

The negative and positive gradient terms of this cost function
are

Sty b

[Vics(B)k: = =Lt (15)
K2by; 51K by
and
N 1
[VaesB)lki = —F——. (16)
K §/TE by

3.2. Alternative temporal continuity term

Motivated by the inverse behavior of percussive and harmo-
nic signals in time and frequency, we also propose to use a
temporal flatness (TF) term as alternative to Virtanens TSD.
The proposed TF term is

I
Z N Zn 1g'LTL (17)
i=1 NV Hn 19i,n
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Fig. 4: Results for different values of a; for Virtanens TSD

and the proposed TF cost term, without using spectral cost
terms.

The negative and positive gradient terms of this cost function,
[Vaci(G)lin and [Vge(G)in can be calculated equiva-
lently to Equations (15) and (16).

4. EVALUATION & RESULTS

We performed source separation as described in Section 2.2
to evaluate the influence of the different additional terms.
As we wanted to evaluate the separation quality of the NMF
without being affected by errors introduced by a clustering
algorithm, we use a non-blind clustering where the original
signals are used as references for clusters, as described in [1].
As measure for separation quality, we use the Signal-to-
distortion ratio (SDR) as proposed in [13].

4.1. Testset & Setup

The testset consists of 60 audio signals, including harmonic
and percussive signals, speech, vocals and noise, each being
sampled with 44.1 kHz. These signals were mixed in every
possible two-source combination, resulting in 1770 mixtures.
The testset is identical to the one used in [3].

For the short time fourier transform, we used a window si-
ze of s, = 2'2 and a hop size of s;, = 2'! samples. The
parameter I of the NMF was set to 15 for every mixture.
This value was chosen, because it had shown to be a suita-
ble average number of components for this testset. We tested
several reconstruction error terms for the NMF, namely IS-
distance, KL-divergence and squared Euclidean distance. The
KL-divergence produced the best separation results, therefore
we use KL-divergence for evaluation.

4.2. Temporal cost terms

In a first experiment, we compared the influence of Virtanens
TSD term and the TF term proposed in Equation (17). For
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Fig. 5: Results for different values of «s for the SSD and the
spectal flatness cost term, without using temporal cost terms.

this experiment, we set as = 0, so the spectral cost terms
would not influence the results. Figure 4 shows the average
SDR over all 1770 mixtures for different values of a;. The
xz-axes are scaled differently for better comparability. The
result for a; = 0 equals the standard NMF.

The average SDR for the standard NMF was 12.45 dB. Both
temporal cost terms resulted in higher SDR for different
values of «;. Virtanens TSD reached a maximum SDR of
13.03 dB for oy = 20. Our TF cost term reached a maximum
SDR of 13.13dB for o; = 160.

For higher values of oy, the separation quality decreases for
both temporal cost functions. However, for the TF term, the
quality decreases slower than for the TSD. Temporal flatness
seems to be a more robust method in terms of the correct
choice of «;.

4.3. Spectral cost terms

In a second experiment, we compared the influence of the
two proposed spectral cost terms. For this experiment, we set
a¢ = 0, so the temporal cost terms would not influence the
results. Figure 5 shows the average SDR over all 1770 mix-
tures for different values of . The result for gy = 0 equals
the standard NMF.

The average SDR for the standard NMF was 12.45 dB. On-
ly the SSD cost term resulted in higher SDR for different
values of «. It reached a maximum SDR of 12.81dB for
as = 0.8. The SF cost term resulted in worse separation for
every ag > 0.

4.4. Combination of temporal and spectral cost terms

In a third experiment, we tried to combine spectral and tem-
poral cost terms to evaluate, if this combination can lead to
even better separation results. Motivated by the results of the
previous experiments, we decided to only use the TF and the
SSD term.
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Fig. 6: Results for different values of s for the SSD cost term
with different values of «; for the TF cost term.

We performed source separation with different combinations
of a; and «. The results showed, that adding the SSD term
with low «, while using TF improves the separation results
slightly. Figure 6 shows the average SDR over different values
of a4, using TF, for oy = 0.2, which was the value leading
to the best results. We added oy = 0, which equals the result
in Figure 4, for comparison. It can be observed that adding
an SSD term with ag = 0.2 improves the results. For higher
values of o there is no more improvement.

5. CONCLUSION

In this paper, we proposed two additional cost terms for NMF,
supporting continuous spectral basis vectors. Our results sho-
wed, that one of the proposed cost terms leads to better results
than the standard NMF. We also proposed a temporal flatness
cost term as alternative to Virtanens TSD cost term. Our re-
sults showed, that this TF cost term resulted in better separati-
on. We also showed that combinations of temporal and spec-
tral cost terms can improve separation results further.

Future research will aim for better methods to combine diffe-
rent cost terms by better adapting «; and « to the different
components and to find ways of generally adapting the values
of a; and « to different mixtures.
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