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ABSTRACT

Lloyd-Max quantization (LMQ) is a widely used scalar non-

uniform quantization approach targeting for the minimum

mean squared error (MMSE). Once designed, the quantizer

codebook is fixed over time and does not take advantage of

possible correlations in the input signals. Exploiting corre-

lation in scalar quantization could be achieved by predictive

quantization, however, for the price of a higher bit error

sensitivity. In order to improve the Lloyd-Max quantizer

performance for correlated processes without encoder-sided

prediction, a novel scalar decoding approach utilizing the cor-

relation of input signals is proposed in this paper. Based on

previously received samples, the current sample can be pre-

dicted a priori. Thereafter, a quantization codebook adapted

over time will be generated according to the prediction er-

ror probability density function. Compared to the standard

LMQ, distinct improvement is achieved with our receiver in

error-free and error-prone transmission conditions, both with

hard-decision and soft-decision decoding.

Index Terms— Lloyd-Max quantization, correlated pro-

cess, predictive quantization, probability density function,

soft-decision decoding

1. INTRODUCTION

Quantization plays a key role in digital communications [1].

In [2] three categories of quantizers are identified: (1) Scalar

quantization [3, 4], or vector quantization [5]; (2) quantizers

with fixed-rate coding having the same codeword length for

each quantization index [6, 7], or quantizers with variable-

rate coding [8, 9]; (3) memoryless quantizers with the same

quantization codebook over time [3,4,10], or quantizers with

memory which means that the current quantization recon-

struction levels are dependent on past samples [1, 11], with

the memory referring to statistical properties of the source

process.

When the input signal is correlated, memoryless scalar

quantization is robust but inefficient, since it is designed in the

same way for correlated as for uncorrelated processes. There-

fore, the redundancy in terms of the correlation of source sig-

nals cannot be exploited. In contrast, utilizing the correlation

in signals, predictive quantization [12,13] and transform cod-

ing using an orthogonal transform matrix to decorrelate the

source signals [14] are two major approaches of scalar quan-

tization with memory.

Predictive quantization requires a quantizer inside a pre-

diction loop at the transmitter and the same predictor is used

to decode the signal at the receiver. The difference between

the actual signal and its predictive estimate — the latter be-

ing based on previously reconstructed samples — is actually

quantized. This is known from differential pulse code mod-

ulation (DPCM) [11], adaptive differential pulse code mod-

ulation (ADPCM) [15], and ADPCM-coded speech and au-

dio [16]. However, due to error propagation, predictive cod-

ing is known to be sensitive to bit errors.

In order to achieve better performance in adverse trans-

mission conditions, an additional error concealment is often

desirable [17–19]. Hard-decision decoding and soft-decision

decoding are two further alternative approaches in the re-

ceiver applicable to any of the above mentioned three major

categories of quantizers. If soft information in the form of

log-likelihood ratios (LLRs) containing channel reliability in-

formation is available, a soft-decision decoder could be used

in the receiver [20–23], instead of error concealment which is

typically based only on hard-decided bits.

In this paper, stemming from the idea of scalar quantiza-

tion with memory, we present how to take advantage of the

correlation in the source process, explicitly excluding vector

quantization due to delay constraints. Different to predictive

quantization which requires predictors both at the transmit-

ter and the receiver side, we assume a non-predictive encoder

and employ a predictor only at the receiver side. We utilize an

instantaneous prediction error probability density function to

compute a quantizer codebook with modified reconstruction

levels in the receiver, adapted over time. Moreover, we com-

pare the performance between standard LMQ and our new

approach both with hard-decision and soft-decision decoding

at the receiver. A particular advantage of our approach is its

system-compatible use in decoders for robust non-predictive

scalar quantizers in the encoder.

The paper is structured as follows: In Section 2, we de-
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Fig. 1: Block diagram of the transmission system.

scribe the core of our new approach. Section 3 presents the

receiver with hard-decision and soft-decision decoding. Sim-

ulation results are discussed in Section 4. Finally, some con-

clusions are drawn in Section 5.

2. IMPROVED LLOYD-MAX DECODING

2.1. Overview

The block diagram of the transmission system in our paper

is depicted in Fig. 1. A first order autoregressive process

(AR(1)) with the i.i.d. zero mean Gaussian innovation ẽ =
(ẽ0, ẽ1, . . . , ẽn, . . .) is used as input into the model for the

(unquantized) correlated samples ũ = (ũ0, ũ1, . . . , ũn, . . .)
satisfying ũn = ẽn + ρ · ũn−1, with n ∈ N

0 being the

time index and ρ being the correlation coefficient of the

AR(1) process. After Lloyd-Max quantization (LMQ),

each quantized sample un is represented by a quantizer

bit combination in bipolar notation xn = {−1,+1}M
corresponding to an M bit quantization index i ∈ I =
{0, 1, . . . , 2M −1}. Without loss of generality, the channel

in this paper is described as an equivalent channel model

comprising binary phase-shift keying (BPSK) modulation

without any channel coding. For hard-decision decoding

(HD), the received hard-decided bipolar bit combination

x̂n = {−1, 1}M is transformed to a received quantiza-

tion index în ∈ I, which is further utilized at the re-

ceiver. In contrast, the log-likelihood ratios (LLRs) L(x̂n) =
(L(x̂n(0)), L(x̂n(1)), . . . , L(x̂n(m)), . . . , L(x̂n(M−1))) ∈
R

M of each received bit x̂n(m) ∈ {−1,+1} are expected by

a receiver employing soft-decision decoding (SD) [21], with

bit index m ∈ {0, 1, . . . ,M−1}.

2.2. New Adaptive LMQ Decoder Codebook

The core of our approach is to generate a new decoder quanti-

zation codebook adapted over time and depending on the past

received samples. While decision levels are standard LMQ

ones (as in the encoder), reconstruction levels are adaptively

modified.

The well-known LMQ reconstruction levels for quantiza-

tion index i read [1]

u(i) =

∫ di+1

di

ũ · pŨ (ũ) dũ∫ di+1

di

pŨ (ũ) dũ
. (1)

The reconstruction level u(i) is the centroid of the area of the

sample probability density function (PDF) pŨ (ũ) in the i-th
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Fig. 2: Unquantized sample PDF and shifted PDF of the

receiver-sided prediction error.

quantization interval (i. e., the area between decision levels di
and di+1), which is shown as black dot in the upper plot of

Fig. 2.

However, for correlated samples, after estimation of the

previous sample ûn−1 in the receiver, a respective predicted

sample û+
n at current time index n can be obtained according

to (in the AR(1) case)

û+
n = ρ · ûn−1, (2)

adopting the correlation coefficient ρ from the unquantized

signal ũ. Note that the predictor memory is initialized with

zeros, meaning ûn−1 = 0 for n ≤ 0.

If we are interested in u(i) for a fixed received i = în at

time n, given the predicted sample û+
n (representing the past

received samples), (1) becomes

u(i)
n =

∫ di+1

di

ũn · pŨ (ũn|û+
n ) dũn

∫ di+1

di

pŨ (ũn|û+
n ) dũn

. (3)

For the Gaussian AR(1) process from Fig. 1 we easily see

that for a given ũ+
n = ρ · ũn−1, the PDF of ũn results in

pŨ (ũn|ũ+
n ) = pẼ(ẽn = ũn − ũ+

n ) = f(ũn), which is the

transmitter-sided prediction error PDF pẼ() shifted by ũ+
n .

Applying this to the receiver and replacing ũ+
n by û+

n as it

is given by (2), we can write pŨ (ũn|û+
n ) = p

Ê
(ên = ũn −

û+
n ) = f(ũn), with the shifted receiver-sided prediction error

PDF p
Ê
(ên= ũn− û+

n ) being sketched in the lower graph of

Fig. 2. Note that p
Ê
() in general has a lower variance than

pŨ (ũ). Also note that the shape of p
Ê
() in quantization in-

terval [di, di+1] is quite different from pŨ (ũ). The optimal

reconstruction values are then

u(i)
n =

∫ di+1

di

ũn · p
Ê
(ên = ũn − û+

n ) dũn

∫ di+1

di

p
Ê
(ên = ũn − û+

n ) dũn

, (4)

while the decision levels di and di+1 from the standard LMQ

are kept according to the given received index i = în.
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Fig. 3: Block diagram of the newly proposed receiver with

hard-decision decoding (HD).

The shifted prediction error PDF as used in (4) is given

by:

p
Ê
(ên = ũn − û+

n ) =
1√
2πσ

exp(− (ũn − µ)2

2σ2
), (5)

with the mean µ = û+
n , and variance σ2. Note that equation

(4) can be easily solved numerically with the help of the error

function.

Finally, the estimated sample ûn is given by computing

(4) for each time n using the received index în (hard-decision

decoding). For soft-decision decoding it must be done for all

i ∈ I, followed by further computations.

3. FURTHER DECODER OPTIONS

The receiver can either employ conventional hard-decision

decoding (HD) or soft-decision decoding (SD). While SD is

mostly applicable to mobile transmission, HD can always be

employed, particularly in voice over IP (VoIP).

3.1. Using Hard Decisions

Fig. 3 shows the diagram of the new decoder employing con-

ventional hard decisions. Note that the quantization index i in

(4) is replaced by the received quantization index în.

3.2. Using Soft Decisions

For the new decoder employing soft decisions as depicted in

Fig. 4, a new LMQ codebook and a posteriori probabilities

P(x
(i)
n |x̂n

0 ) (APPs) of a probably transmitted bit combination

x
(i)
n with respect to all the received bit combinations x̂

n
0 =

(x̂0, x̂1, . . . , x̂n) are needed for the sample estimation [21].

Assuming an additive white Gaussian noise (AWGN)

channel, the log-likelihood ratios (LLRs) being input into the

receiver with soft-decision decoding in Fig. 4, can be obtained

by L(x̂n(m)) = 4 · Eb

N0
· x̃n(m), with x̃n(m) being the real-

valued signal observed at the (noisy) transmission channel

output satisfying x̂n(m) = sign(L(x̂n(m))) = sign(x̃n(m)),

 

 
 

 

 
 

 

 

     

 

  

 

 

 

 

      

 

 

 

     

 
ρû+

n

û+
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ũn

Soft-Decision Decoding

L(x̂n)

A priori

knowledge

∫ di+1

di

(4) i ∈ I

T

Sample

Estimation

(12)

APPs

(10,11)

u
(i)
n

P(x
(i)
n |x̂n

0 )

ûn

Fig. 4: Block diagram of the newly proposed receiver with

soft-decision decoding (SD).

the signal energy per bit Eb, and N0 being the noise power

spectral density. Accordingly, a bit error probability is given

by BERn(m) = 1
1+exp(|L(x̂n(m))|) . Thereafter, assuming a

memoryless channel, the probabilities of the transition from

a possibly transmitted bit combination x
(i)
n to a received bit

combination x̂n (i. e., the transition probabilities) is formu-

lated by

P(x̂n|x(i)
n ) =

M−1∏

m=0

P(x̂n(m)|x(i)
n (m)), (6)

with x
(i)
n (m) being a possibly transmitted bit and the condi-

tional bit probability

P(x̂n(m)|x(i)
n (m))=

{

1− BERn(m), if x̂n(m)=x
(i)
n (m),

BERn(m), else.

(7)

3.2.1. A Posteriori Probabilities (APPs)

Not only the transition probabilities, but also some a priori

knowledge is employed to compute the a posteriori proba-

bilities P(x
(i)
n |x̂n

0 ). A large training database is required to

be processed beforehand to derive the a priori knowledge.

The quantized parameters could be regarded as the output of

a zeroth-order Markov process leading to zeroth-order a pri-

ori knowledge P(x
(i)
n ) (AK0), or as a first-order Markov pro-

cess resulting in first-order a priori knowledge P(x
(i)
n |x(j)

n−1)
(AK1). The occurrence frequency for different pairs of quan-

tizer output symbols is counted and normalized to obtain the

joint probability P(x
(i)
n ,x

(j)
n−1), thereafter, the AK0 term is

obtained from

P(x(i)
n ) =

∑

j∈I

P(x(i)
n ,x

(j)
n−1). (8)

According to the chain rule, the AK1 term is computed by

P(x(i)
n |x(j)

n−1) =
P(x

(i)
n ,x

(j)
n−1)∑

k∈I

P(x(k)
n ,x

(j)
n−1)

. (9)

Applying the AK0 or AK1 term, the a posteriori proba-

bilities can be obtained either by [21]

P(x(i)
n |x̂n

0 ) =
1

Cn

· P(x̂n|x(i)
n ) · P(x(i)

n ) , (10)
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Fig. 5: Simulation results for M = 1 bit quantized Gaussian

AR(1) samples with correlation coefficient ρ=0.9.

or

P(x(i)
n |x̂n

0 ) =
1

Cn

· P(x̂n|x(i)
n ) ·

∑

j∈I

P(x(i)
n |x(j)

n−1)

· P(x(j)
n−1|x̂n−1

0 ) ,

(11)

with Cn normalizing the sum over the APPs to one.

3.2.2. Sample Estimation

Using the APPs (10) or (11) and the new time-varying LMQ

decoder codebook (4), the sample un at time index n can be

reconstructed by minimum mean-square error (MMSE) esti-

mation:

ûn =
∑

i∈I

u(i)
n · P(x(i)

n |x̂n
0 ) . (12)

4. SIMULATIONS

4.1. Simulation Setup

Lloyd-Max quantizers for 1 bit, 2 bit, and 3 bit per sample are

employed in three separate simulations, respectively. In each

simulation, a number of 106 zero mean unit variance Gaussian

AR(1) samples with ρ=0.9 is transmitted over different chan-

nel realizations for a given range of Eb/N0 values. The bit

mapping un → xn follows the natural binary code (NBC) [1].

A number of 108 quantized Gaussian AR(1) samples with cor-

relation ρ=0.9 is utilized to obtain the AK0 and AK1 a pri-

ori probability terms (8), (9). The performance is evaluated

by means of the global signal-to-noise ratio (SNR) [21] with

reference to the 106 yet unquantized samples ũ.

4.2. Discussion

The simulation results of using the standard LMQ and our

new approach are compared in Figs. 5 and 6, with HD denot-
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Fig. 6: Simulation results for M =2 bit, M =3 bit quantized

Gaussian AR(1) samples with correlation coefficient ρ=0.9.
ρ

LMQ 0 0.3 0.5 0.7 0.8 0.9

standard 9.30 9.30 9.30 9.30 9.30 9.30

new 9.30 9.35 9.45 9.67 9.86 10.20

Table 1: SNR (dB) of the standard LMQ and the new LMQ for

an M=2 bit quantized Gaussian AR(1) process with different

correlation coefficients ρ in error-free transmission.

ing the use of hard decisions according to Fig. 3, AK0 and

AK1 representing soft-decision decoding according to Fig. 4,

with zeroth-order and first-order a priori knowledge, respec-

tively. As shown in Fig. 5, we first performed experiments for

M = 1 bit. It can be observed in the upper graph in Fig. 5

that the performance particularly of hard decision has been

improved with the new approach. In fact, σ2 = 1 in (5) is

actually not an optimum value for equation (4). Clear fur-

ther improvements can be obtained by searching for an opti-

mal σ2
opt in error-free transmission. It can be seen in the lower

graph of Fig. 5 that the SNR gain of our approach vs. standard

LMQ in error-free transmission conditions can be increased

from 0.1 dB (σ2 = 1) to 1.0 dB (σ2
opt = 2.02)!

We also performed simulations with M =2 bit and M =
3 bit using the respective optimized variances for the decoder

codebook. The use of our new approach again leads to promi-

nent improvements versus the standard LMQ, especially for

the lower bit rate (M =2 bit). Both HD and SD approaches

take profit. Comparing the simulation results for M =1, 2, 3

bit, we can state that the new approach takes particular profit

from low bit rate scalar quantization.

The effect of the correlation has been further investigated

by varying the correlation coefficients ρ for M = 2 bit with

the respective optimized variances in error-free transmission

conditions. Table 1 reveals increasing SNR gains for higher

correlation coefficients. For uncorrelated processes (ρ = 0)

we obtain û+
n = 0, leading to the standard zero-mean PDF



p
Ê
(ên = ũn− 0) ≡ pŨ (ũn). In consequence, the SNR of

using the standard LMQ and the new LMQ decoder in this

case converge to be the same.

5. CONCLUSIONS

In this paper we present a new approach to improve the decod-

ing performance of scalar Lloyd-Max quantizers (LMQs) for

correlated samples. An adaptive new LMQ decoder codebook

can be obtained by exploiting the signal PDF conditioned on a

predicted sample. Simulations over an AWGN channel show

that our novel approach exceeds the standard LMQ approach

both in error-free and error-prone transmission conditions, es-

pecially for low bit rate scalar quantization of highly corre-

lated processes, while being compatible with standard LMQ

encoders.
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