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ABSTRACT
For decades, it has been investigated how to separately solve
the problems of both direction-of-arrival (DOA) and pitch es-
timation. Recently, it was found that estimating these pa-
rameters jointly from multichannel recordings of audio can
be extremely beneficial. Many joint estimators are based on
knowledge of the inverse sample covariance matrix. Typi-
cally, this covariance is estimated using the sample covariance
matrix, but for this estimate to be full rank, many temporal
samples are needed. In cases with non-stationary signals, this
is a serious limitation. We therefore investigate how a recent
joint DOA and pitch filtering-based estimator can be com-
bined with the iterative adaptive approach to circumvent this
limitation in joint DOA and pitch estimation of audio sources.
Simulations show a clear improvement compared to when us-
ing the sample covariance matrix and the considered approach
also outperforms other state-of-the-art methods. Finally, the
applicability of the considered approach is verified on real
speech.

Index Terms— Direction-of-arrival, fundamental fre-
quency, linearly constrained minimum variance, iterative
adaptive approach, high resolution.

1. INTRODUCTION

Microphone arrays are often used for recording audio sources
such as speech and musical instruments. It is well known that
many short segments of such recordings are approximately
periodic, and that two particularly interesting parameters de-
scribing them are the fundamental frequency, herein denoted
as the pitch, and the direction-of-arrival (DOA) of the au-
dio source in relation to the microphone array. The interest
emanates from the fact that the pitch, the DOA or both pa-
rameters are key components in a substantial body of signal
processing methods for compression, separation, enhance-
ment, beamforming, automatic music transcription, music
classification, localization, etc. Many of these methods are or
can be utilized in several applications, including hands-free
communication, smart homes, hearing aids, surveillance sys-
tems, and teleconferencing. This emphasizes the importance
of knowing the pitch and DOA.
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Traditionally, the estimation of the pitch and DOA has
been treated as two independent estimation problems. DOA
estimation [1], for example, has been considered in the con-
text of geophysics, radio astronomy, biomedical engineering,
radar, and microphone arrays. Likewise, pitch estimation has
also been widely and independently studied, resulting in var-
ious classes of methods based on, e.g., autocorrelation func-
tions, filtering, subspaces, and statistical models [2]. How-
ever, in the recent years, joint estimation of the pitch and
DOA have been an increasingly considered research topic.
Some of the advantages of conducting joint estimation were
outlined in [3]: 1) if a source parameter is similar for both
sources in a two-source scenario, the sources are not resolv-
able with separate estimation, and 2) joint estimation poten-
tially gives a higher estimation accuracy. The research in
joint DOA and pitch estimation, has resulted in different joint
estimation approaches. Examples are maximum likelihood
based [3], subspace-based [4, 5], correlation-based [6], and
filtering-based [7–9] methods.

The filtering-based approach, being considered in this
paper, has proven particularly useful in scenarios with mul-
tiple sources, since no explicit assumption about the noise
is needed [2]. However, in these filtering methods, the in-
verse covariance matrix of the observed signal is needed,
which is problematic in practice. The reason is that the so-
called spatio-temporal sample covariance matrix estimate is
typically utilized, but for this to be full rank in the multi-
channel case, a large number of temporal samples is usually
needed [3]. In other words, most previously proposed filtering
methods for joint DOA and pitch estimation of audio sources
have not been applicable on short multichannel observations.
We, therefore, consider the application of an optimal filtering
approach [9] for joint DOA and pitch estimation to audio
sources. This approach combines LCMV filtering [8] with
the iterative adaptive approach (IAA) [10]. More specifically,
we extend on the work in [9] by 1) investigating the advan-
tages of using the IAA covariance matrix estimate rather than
the sample covariance matrix estimate both theoretically and
through simulations, 2) comparing the IAA-based LCMV
filtering method for joint DOA and pitch estimation with
state-of-the-art methods, and 3) showing how the IAA-based
LCMV filtering method can be applied on real audio record-
ings. While computational complexity of the considered
method is relatively high, it can be lowered dramatically by



generalizing recently proposed implementations, e.g., [11] to
the multichannel scenario.

The remainder of the paper is organized as follows: in
Section 2, we introduce our signal model, and formulate the
research problem. Then, in Section 3, we present the LCMV
filter for joint DOA and pitch estimation, and we consider
covariance estimation in Section 4. The experimental results
are found in Section 5, and, finally, a discussion is found in
Section 6.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

We consider the scenario, where K microphones are used
for recording a desired signal added to a mixture of back-
ground noise and interfering sources. At time instance n for
the k’th microphone, the recorded signal can be modeled as
yk(n) = xk(n) + vk(n), where xk(n) is the desired signal,
and vk(n) is a sum of the background noise and interfering
sources. The topic of this paper is joint estimation of the
pitch and DOA of periodic sources recorded using a micro-
phone array, so, naturally, we assume the desired signal to
be periodic. This has proven to be a good assumption for
short segments of voiced speech and musical instrument sig-
nals [2]. The background noise can, for example, be sen-
sor noise, while examples of interfering sources may be other
directive periodic sources (fan, speech, etc.). By exploiting
the periodicity assumption, and by assuming that the micro-
phones are situated in relative close vicinity of each other, the
observed signal can be further modeled as [3]

yk(n) =

L∑
l=1

αle
jlω0(n−fsτk) + vk(n), (1)

with L denoting the number of harmonics, αl = Ale
jφl is

the complex amplitude of the l’th harmonic, Al > 0 and φl
are the real amplitude and phase of the l’th harmonic, ω0 is
the pitch, fs is the sampling frequency, and τk is the delay
of the desired signal from microphone 0 to microphone k.
Reverberation is not explicitly accounted for in the model,
but it is partly represented by vk(n). The delay can be fur-
ther modeled if we know how the microphones are situated
in relation to each other. While any such microphone array
structure can be considered, we assume a uniform linear ar-
ray (ULA) structure herein. In this case, the delay is given by
τk = k d sin θ

c , where d is the spacing between two neighbor-
ing microphones, θ is the direction-of-arrival (DOA) of the
desired source in relation to the array, and c is the propaga-
tion speed of the sound wave. With this model of the delay,
the observed signal model can be rewritten as

yk(n) =

L∑
l=1

αle
jlω0ne−jlωsk + vk(n), ωs = ω0fsτ1. (2)

In practice, we wish to estimate the DOA and pitch from
N consecutive samples from K microphones. Stacking these
observations in vectors helps us in the derivation of optimal
filtering methods for solving the estimation problem. The ob-
served signals can, e.g., be organized as [Y(n)]km = yk(n−
m), for k = 0, . . . ,K − 1 and m = 0, . . . , N − 1, and [·]km
denotes the (k,m)’th entry of a matrix. In the considered es-
timation method, subblocks of the observed signal are also
used, and these are defined as

Yk(n) =

L∑
l=1

αl(n)zs(lωs)z
T
t (lω0) + Vk(n), (3)

where [Yk(n)]pm = yk+p(n − m), for p = 0, . . . , P − 1
and m = 0, . . . ,M − 1, [Vk(n)]pm is defined similarly to
[Yk(n)]pm, αl(n) = ejlω0n, [zs(lωs)]p = e−jlpωs , for p =
0, . . . , P − 1, where [·]p denotes the p’th entry of a column
vector, [zt(lω0)]m = e−jlmω0 , form = 0, . . . ,M−1, P is the
spatial subblock length, M is the temporal subblock length,
and (·)T denotes the matrix transpose. Stacking the columns
of the matrices, yields

yk(n) = vec{Yk(n)} =

L∑
l=1

αl(n)zl + vk(n), (4)

with vec{·} denoting the operator that stacks the columns of
a matrix, vk(n) = vec{Vk(n)}, and zl = zs(lωs)⊗ zt(lω0),
where ⊗ is the Kronecker product operator.

3. OPTIMAL FILTERING METHOD

As initially shown in [3], optimal filtering can be used to
solve the joint DOA and pitch estimation problem. We briefly
present the highlights of this approach in the following sec-
tion. First of all, we define the spatio-temporal filtering opera-
tion as zk(n) = hHyk(n), where h is the spatio-temporal fil-
tering vector, and (·)H denotes the complex conjugate trans-
pose of matrix or vector. The idea is then to design a filter
that passes the desired signal, in this case a harmonic sig-
nal, undistorted, while reducing the noise as much as possible.
Mathematically, this design problem is equivalent to

min
h

hHRyh s.t. hHzl = 1, for l = 1, . . . , L,

where Ry = E[yk(n)yHk (n)], and E[·] denotes the mathemat-
ical expectation. The well-known solution to this quadratic
optimization problem can be obtained using Lagrange multi-
pliers and is given by

h = Ry
−1Z

(
ZHRy

−1Z
)−1

1, (5)

with 1 ∈ RL denoting a vector of ones, and Z = [z1 · · · zL].
The DOA and pitch are then estimated jointly, by designing
the optimal filter for different candidate DOAs and pitch fre-
quencies, and maximizing the output power of the filter over



these candidates. This can also be written as

{ω̂0, θ̂} = arg max
{ω0,θ}∈Ω×Θ

hHRyh, (6)

where Ω and Θ denote the sets of candidate DOAs and pitch
frequencies, respectively. In practice, the covariance matrix
of the observed signal Ry is unknown and has to be esti-
mated. Care should be taken, though, that the estimate is
invertible due to the expression in (5).

4. COVARIANCE ESTIMATION

The traditional way of estimating the covariance matrix is
to use a spatio-temporal sample covariance matrix estimate.
This outer product estimate of Ry is given by [3]

R̂y =

K−P∑
k=0

N−M∑
m=0

yk(n−m)yHk (n−m)

(K − P + 1)(N −M + 1)
. (7)

For this estimate of the covariance matrix to be invertible, we
must require that (K − P + 1)(N −M + 1) ≥ MP . Typ-
ically, the number of microphones is small, and K � N , so
to achieve a reasonable spatial resolution with the resulting
estimator, we choose P = K. In this case, the inequality can
be rewritten as M ≤ N+1

K+1 . That is, M should be very small
or a large amount of temporal samples N is needed if K is
relatively large.

To avoid these limitations, we consider the use of the IAA
[10] in conjunction with the optimal filtering method for joint
DOA and pitch estimation. In [10], the IAA was applied
for spectral amplitude estimation in two dimensions, namely
range and DOA. In the following, we show how this princi-
ple can be used for spatio-temporal spectral amplitude and
covariance estimation. First, we denote an amplitude of a
spatio-temporal frequency component of interest by αγ′,ψ′ ,
where γ′ is a frequency index, and ψ′ is a spatial frequency
index corresponding to the DOA. By utilizing the covariance
matrix model [12], the noise covariance matrix can then be
approximated as

Qγ′,ψ′ ≈ R̃y − |αγ′,ψ′ |2zγ′,ψ′zHγ′,ψ′ , (8)

R̃y =

Γ∑
γ=1

Ψ∑
ψ=1

|αγ,ψ|2zγ,ψzHγ,ψ, (9)

γ and ψ denote frequency and spatial frequency indices, re-
spectively, Γ is the number of frequency grid points utilized
in the IAA, and Ψ is the number of spatial frequency grid
points utilized in the IAA. The matrix R̃y can be seen as an
estimate of the signal covariance matrix, and zγ,ψ = zs(ψ)⊗
zt(γ), [zt(γ)]n = e−jnωγ , for n = 0, . . . , N − 1, [zs(ψ)]k =
e−jkωs,ψ , for k = 0, . . . ,K − 1, ωγ = γ−1

Γ 2π denotes the
frequency corresponding to the γ’th grid point, and ωs,ψ =
ψ−1

Ψ 2π denotes the spatial frequency corresponding to the
grid point ψ.

(a)

(b)

Fig. 1. Plots of the cost-functions for the LCMV-IAA and
LCMV-SC methods when applied on a synthetic, multichan-
nel, periodic signal for (a) N = 20 and (b) N = 80.

The IAA is then used to estimate the amplitude αγ′,ψ′

through minimization of a weighted least squares (WLS) cost-
function defined as

JWLS = [y(n)− αγ′,ψ′zγ′,ψ′ ]
H
Qγ′,ψ′ [y(n)− αγ′,ψ′zγ′,ψ′ ] ,

where y(n) = vec{Y(n)}. If we minimize JWLS with re-
spect to the unknown amplitude αγ′,ψ′ , we get the following
closed-form estimate [10]

α̂γ′,ψ′ =
(
zHγ′,ψ′R̃−1

y zγ′,ψ′

)−1

zHγ′,ψ′R̃−1
y y(n). (10)

We note that the amplitude estimate depends on the estimate
of the covariance matrix and vice versa, so these are estimated
by iterating between (9) and (10), hence the method is termed
the IAA. While the IAA has historically been used for ampli-
tude spectrum estimation, we here utilize it for estimation of
the covariance matrix of the observed signal herein. As op-
posed to the sample covariance matrix estimate, this estimate
is formed from a single observation, y(n), while also being
full-rank. This enables us to choose M = N and P = K, but
of course it is computationally more complex to obtain this es-
timate than the sample covariance matrix estimate. The IAA
is initialized with R̃y = I, and, typically, 10-15 iterations is
sufficient to achieve convergence.

5. EXPERIMENTAL RESULTS

First, we compare the considered method (LCMV-IAA), with
LCMV filtering based on the spatio-temporal sample covari-
ance matrix estimate (LCMV-SC). For this experiment, we
used a synthetic, periodic signal with L = 4, θ = −45◦,
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Fig. 2. MSEs of pitch and DOA estimates for different N ’s
and K’s for the considered IAA-based LCMV and state-of-
the-art methods for joint DOA and pitch estimation.

f0 = 200 Hz, fs = 4 kHz, the harmonics each had unit am-
plitudes, and white noise was added to each channel at an
SNR of 30 dB. The remaining simulation set up was: K = 3,
P = 3, N = 20, M = bN+1

K+1c, Γ = 512, Ψ = 128, 10 IAA
iterations were used, c = 343 m/s, and d = 0.04 m. With
this setup, we implemented the LCMV-IAA and LCMV-SC
methods, and evaluated their respective cost-functions for dif-
ferent candidate DOAs and pitch frequencies, and the results
are shown in Fig. 1a. Clearly, the LCMV-SC method is not
able to estimate the DOA and pitch accurately from this small
segment, due to a poor frequency resolution, as opposed to
the LCMV-IAA method. If we then raise the number of tem-
poral samples to N = 80, we get the results in Fig. 1b. With
this increased number of samples, the LCMV-SC method is
now able to obtain a reasonable DOA and pitch estimate, and
it even seems that it has higher spatial resolution than LCMV-
IAA. This indicates that the LCMV-IAA method should be
applied on short segments, while LCMV-SC should be ap-
plied on longer segments.

The estimation accuracy of the considered method was
also evaluated in terms of mean squared errors (MSEs) in
series of Monte-Carlo simulations. In these simulations, we
compared the considered method (L), with the multichan-
nel pitch estimator in [13] (aML), the exact and asymptotic
joint NLS estimators in [3] (N and aN), and the SRP-PHAT
method for DOA estimation [14] (SP). Note that the con-
sidered, LCMV method was implemented with the IAA
covariance matrix estimate, since relatively small N ’s are
considered. The methods were compared on different scenar-
ios with a single harmonic signal as the desired signal added
with a mixture of an interfering source and white Gaussian
noise. In these experiments, a harmonic signal with 4 unit
amplitude harmonics were used with a the pitch being sam-
pled from U(250 Hz, 300 Hz) and the DOA being sampled
from U(15◦, 35◦) in each Monte-Carlo simulation. The inter-

Fig. 3. Plots of (top) the spectrogram of a speech signal, and
estimates of its (middle) pitch and (bottom) DOA. The legend
for the plot is found in Fig. 2

fering sinusoid also had unit amplitude, and the white noise
was added at a 30 dB SNR in relation to the desired signal.
Besides that, fs = 4 kHz, c = 343 m/s, and d = 0.04 m,
Γ = 256, and Ψ = 64. With this setup, we first consid-
ered a scenario, where the interfering source had the same
DOA as the desired signal, but with a frequency equal to
fi = f0 + 40 Hz. In this scenario, the pitch and DOA was
estimated with different N ’s and K = 2, and for each N ,
the MSE of the estimates was found from 100 Monte-Carlo
simulations. In another scenario, the interfering sinusoid had
the same frequency as the pitch of the desired signal, but with
a DOA of θi = 80◦. For this scenario, Γ = 256 and Ψ = 128,
and the MSEs were measured for different K’s with 100
Monte-Carlo simulations for each K, and N was fixed to 20.
The results obtained from these scenarios are shown in Fig.
2. We see that for N ≥ 20 the L method outperforms all the
other methods for pitch estimation, and, similarly, all other
methods are outperformed for all considered K’s in terms
of DOA estimation. Otherwise, the performance of the L
method is comparable to that of the NLS method.

In the final experiment, the considered method was eval-
uated on a real-signal. The signal used was a 2.4 seconds
long, single-channel speech signal, which was resynthesized
spatially, using an online available room impulse response
generator [15]. The RIR generator was set up as follows:
c = 343 m/s, fs = 8 kHz, the microphones of a ULA was lo-
cated at [2+d(k−K−1

2 )] m×0.1 m×1.5 m for k = 1, 2, 3, d =
0.04 m, the source was located at θ = −35◦ and rc = 2 m,
the room dimensions was 4 m×4 m×3 m, the length of the
RIRs was 2,048, the microphone types was omnidirectional,
and the reflection order was 0. With this setup, we generated
the spatial-temporal data on which the aforementioned meth-
ods were applied on consecutive frames of length N = 50 of
the multichannel signal. The estimators were implemented by
assuming that L = 6 and with Γ = 128 and Ψ = 64. In the
SRP-PHAT method, we used an FFT length of 256 and inte-



grated over frequencies in the interval [150 Hz, fs/2]. More-
over, due to pitch halfing/doubling (i.e., pitch estimates being
approximately half/twice the true pitch) as an effect of choos-
ing a fixed model order, the pitch estimates were smoothed
using the method in [16] with the bonus parameter set to 150.
The results in Fig. 3 were obtained with this setup. Compar-
ing the obtained pitch estimates with the spectrogram of the
speech signal, it is difficult to judge which method has the
highest accuracy, but the L, N, and aN methods clearly out-
perform the aML method. The L, N, and aN estimators seem
to obtain pitch estimates in the correct frequency region. Re-
garding DOA estimation, the considered method shows simi-
lar accuracy compared to the N and aN methods, but it clearly
seems to outperform the other SP method.

6. DISCUSSION

We considered joint estimation of the DOA and pitch of a pe-
riodic source captured using a microphone array in this paper.
The joint estimation of these parameters have only been con-
sidered for less than a decade, and only relatively few of such
methods exist, with some examples being [3–9]. Some of the
recent approaches are based on the inverse spatio-temporal
covariance matrix, and this covariance is most often replaced
by the sample covariance matrix estimate in practice. How-
ever, for this estimate to be full rank, we need a large number
of temporal samples, and this becomes even more pronounced
by raising the numbers of sensors. If the signal of interest is
highly non-stationary, this will clearly be a huge limitation of
these methods. Herein, we consider the idea of combining a
recent, filtering-based joint DOA and pitch estimator [3] with
the IAA [10] for covariance matrix estimation, an idea that
was spawned in [9]. We extend the work in [9] by investigat-
ing the advantages of using the IAA covariance matrix esti-
mate rather than the sample covariance matrix estimate both
theoretically and through simulations. We also compare the
IAA-based LCMV filtering method for joint DOA and pitch
estimation with state-of-the-art methods, and show its appli-
cability to multichannel audio recordings.
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