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ABSTRACT

This paper presents a new approach to elimination of im-

pulsive disturbances from stereo audio recordings. The pro-

posed solution is based on vector autoregressive modeling of

audio signals. On-line tracking of signal model parameters

is performed using the stability-preserving Whittle-Wiggins-

Robinson algorithm with exponential data weighting. De-

tection of noise pulses and model-based interpolation of the

irrevocably distorted samples is realized using an adaptive,

variable-order Kalman filter. The proposed approach is eval-

uated on a set of clean audio signals contaminated with real

click waveforms extracted from silent parts of old gramo-

phone recordings.

Index Terms— Elimination of impulsive disturbances

1. INTRODUCTION

Archive audio files, such as old gramophone recordings, are

often degraded by impulsive disturbances. Clicks, pops, ticks

and record scratches are caused by aging and/or mishandling

of the surface of gramophone records, specks of dust and dirt,

foults in the record stamping process etc. Elimination of such

disturbances from archive audio documents is an important

element of saving our cultural heritage. Although two tracks

of a stereophonic audio signal can be split and processed sepa-

rately (see e.g. [1] – [4] and the references therein), this is

certainly not the best approach to restoration of stereo record-

ings. We will show that both detection and reconstruction

(interpolation) of irrevocably distorted samples can be per-

formed more reliably when two channels are analyzed jointly

using the vector autoregressive modeling technique.

2. SIGNAL IDENTIFICATION

The measured stereo audio signal will be denoted by y(t) =
[y1(t), y2(t)]

T, where t = . . . ,−1, 0, 1, . . ., denotes normal-

ized (dimensionless) discrete time and y1(t)/y2(t) denotes

the left/right audio track. We will assume that the signal y(t)
can be written down in the form:
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y(t) = s(t) + δ(t) (1)

where s(t) = [s1(t), s2(t)]
T denotes the clean audio signal

and δ(t) = [δ1(t), δ2(t)]
T is a signal made up of sparsely

distributed noise pulses. To keep the analysis simple, we will

assume that the measured signal is not contaminated with an

additive wideband noise (the so-called surface noise).

2.1. Stationary Case, Known Covariance Structure

The clean audio signal will be modeled as a vector (two-

dimensional) autoregressive (VAR) process of order r

s(t) =

r∑

i=1

Ais(t− i) + n(t), cov[n(t)] = ρ (2)

where

Ai =

[
a11,i a12,i
a21,i a22,i

]
=

[
αT

1i

αT
2i

]
, i = 1, . . . , r

are the 2× 2 matrices of AR coefficients and {n(t)}, n(t) =
[n1(t), n2(t)]

T, denotes zero-mean white noise.

Denote by 0 the 2 × 1 null vector, and by O and I – the

2× 2 null and identity matrices, respectively.

In the majority of audio applications, including the adap-

tive detection/reconstruction problem considered in this pa-

per, the stability of the signal model must be guaranteed to

make the model-based analysis (such as the multiple-step-

ahead signal prediction and its interpolation) well-posed. The

classical stability-preserving identification method, which

can be applied in the stationary case, is based on Yule-Walker

equations that link the parameters of the model (2) with the

covariance structure of the VAR signal

[I,−A1, . . . ,−Ar]RRR = [ρ,O, . . . ,O] (3)

where RRR > 0 is a block-Toeplitz matrix made up of covari-

ance matrices of the VAR process Rk = E[s(t)sT(t − k)],
k = 0, . . . , r:

RRR =




R0 R1 . . . Rr

RT
1 R0

...
... R1

RT
r . . . R0



. (4)



The order-recursive solution of (3) can be obtained using

the well-known Whittle-Wiggins-Robinson (WWR) algo-

rithm (the multivariate extension of the Levinson-Durbin

algorithm) – for a detailed description of this algorithm and

discussion of its properties see Complement C8.6 in [6]. An

important feature of the method described above is that under

RRR > 0 it always yields a stable VAR model.

2.2. Nonstationary Case, Unknown Covariance Structure

When parameters of the VAR model (2) vary slowly with time

their estimates Â1(t), . . . , Âr(t), ρ̂(t), based on the avail-

able observation history Y(t) = {y(1), . . . ,y(t)}, can be ob-

tained by solving the system of Yule-Walker equations analo-

gous to (3)

[I,−Â1(t), . . . ,−Âr(t)] R̂RR(t) = [ρ̂(t),O, . . . ,O] (5)

where R̂RR(t) is the block-Toeplitz matrix obtained by means

of replacing in (4) the true signal covariances Rk with their

local sample estimates. In the absence of impulsive noise such

local estimates can be obtained using the approach known as

exponential weighting (or exponential forgetting). Perhaps

the most straightforward application of this technique would

be to replace each Rk with

R̂k(t) =
1

l0(t)

t∑

j=k+1

λt−j
0 y(j)yT(j − k) (6)

where λ0, 0 < λ0 < 1, denotes the so-called forgetting con-

stant and l0(t) =
∑t

j=1 λ
t−j
0 denotes the effective width of

the exponential window. The value of λ0 should be chosen

so as to trade off the bias and variance components of the

mean-squared parameter tracking error [6]. However, since

the matrix R̂RR(t) made up of the blocks computed according

to (6) is not guaranteed to be positive definite, such a solution

is not feasible.

A simple way out of difficulty, proposed hereby, is to

compute covariance estimates according to

R̂k(t) =
Yk(t)

l(t)
, l(t) =

t∑

j=1

λ2(t−j) =
1− λ2t

1− λ2

Yk(t) =

t∑

j=k+1

yλ(j, t)y
T
λ (j − k, t) , k = 0, . . . , r (7)

where λ, 0 < λ < 1, denotes the forgetting constant and

{yλ(1, t), . . . ,yλ(t, t)} is the exponentially weighted data se-

quence

yλ(j, t) = λt−jy(t), j ≤ t.

The quantities l(t) and Yk(t) can be computed recursively

according to

l(t) = λ2l(t− 1) + 1, t ≥ 1

Yk(t) = λ2Yk(t− 1) + λky(t)yT(t− k), t > k (8)

with initial conditions set to l(0) = 0 and Yk(k) = O.

When the forgetting constant λ is close to 1, the esti-

mates based on exponential data weighting (7) yield similar

results as exponentially weighted estimates (6) obtained for

λ0 = λ2. The important difference is, however, that unlike

the weighted estimation scheme, the data weighting technique

guarantees positive definiteness of the matrix R̂RR(t). In order

to see this note that – when made up of the blocks (7) – the

matrix R̂RR(t)can be written down in the form

R̂RR(t) =
1

l(t)

t+r∑

j=1

z(j)zT(j)

where z(j) = [ỹT
λ (j, t), . . . , ỹ

T
λ (j−r, t)]T and {ỹλ(j, t), j =

1 − r, . . . , t + r} denotes the sequence of weighted sam-

ples preceded and succeeded by r zero samples: ỹλ(j, t) =
yλ(j, t) for j ∈ [1, t] and ỹλ(j, t) = 0 for j ∈ [1 − r, 0] ∪

[t+1, t+ r]. The (almost sure) positive definiteness of R̂RR(t),
which guarantees model stability, follows from two facts: 1)

the quadratic form associated with R̂RR(t) obeys wTR̂RR(t)w =
[1/l(t)]

∑t+r

j=1[w
Tz(j)]2 ≥ 0, and 2) the VAR process is not

(linearly) deterministic.

A single step of the proposed recursive stability-preserving

identification algorithm can be summarized as follows:

1) Update covariance estimates R̂k(t), k = 0, . . . , r, using

(7)-(8); 2) Use the WWR algorithm to compute parameter

estimates Â1(t), . . . , Âr(t) and ρ̂(t).
The WWR algorithm with exponential data weighting is

a new type of lattice filter which does not seem to have been

exploited before. For an overview of lattice estimation tech-

niques see e.g. [7]. Note that, unlike the univariate case, in

the multivariate case only a few existing lattice algorithms

guarantee model stability.

2.3. Estimation in the Presence of Outliers

The estimates (7) were obtained under the assumption that

δ(t) ≡ 0, i.e., that the measured signal is free of impulsive

disturbances. A simple modification will be used to make

it work in the presence of noise pulses. Denote by d(t) =
[d1(t), d2(t)]

T the pulse location function

dj(t) =

{
0 if δj(t) = 0
1 if δj(t) 6= 0

, j = 1, 2

and by d̂(t) = [d̂1(t), d̂2(t)]
T – the output of the outlier de-

tector (which will be described later)

d̂j(t) =

{
0 if noise pulse not detected
1 if noise pulse detected

, j = 1, 2.

To make parameter estimates insensitive to noise pulses, es-

timation of signal covariances (7) is stopped each time when

detection alarm is raised, i.e., when d̂(t) 6= 0. Estimation is

resumed once the reconstruction of the questioned fragment is

finished (using interpolated samples in place of the corrupted

ones).



3. DETECTION OF NOISE PULSES AND SIGNAL

INTERPOLATION

3.1. State space problem formulation

We will start from solving a simpler problem of recovering

an isolated block of m irrevocably distorted samples of a sta-

tionary AR process governed by (2). The block, which starts

at the instant t0 + 1 and ends at the instant t0 + m (i.e.,

d(t0+1) = . . . = d(t0+m) = 1, where 1 = [1, 1]T), is pre-

ceded and succeeded by undistorted samples (i.e., d(t) = 0

for t ≤ t0 and t > t0 + m). We will assume that the lo-

cation of the sequence of noise pulses is known exactly [i.e.,

d̂(t) ≡ d(t)]. We will also assume that noise pulses δ(t0+1),
. . . , δ(t0 +m) can be modeled as a sequence of mutually un-

correlated Gaussian variables, independent of {n(t)}, with

known covariance matrices

∆(t) = cov[δ(t)], t0 + 1 ≤ t ≤ t0 +m.

The solution, based on Kalman smoothing [8], will be a start-

ing point for derivation of a more realistic algorithm combin-

ing adaptive detection of arbitrarily shaped noise pulses with

AR-model based signal interpolation.

To design Kalman filter/smoother we need a state space

equivalent of the input-output description (1)-(2). Let q =
2r +m. Define the 2q × 1 state vector xq(t) = [sT(t), . . . ,
sT(t− q+1)]T made up of the q most recent signal samples.

Denote by 0q the 2q × 1 null vector, and by Oq and Iq – the

2q × 2q null and identity matrices, respectively. According

to our earlier notation: 01 = 0, O1 = O and I1 = I. The

overdetermined state space model of (1)-(2) can be written

down in the augmented companion form [to describe (1)-(2),

it is sufficient to set q = r; the adopted higher-order (non-

minimal) model is needed to solve the signal interpolation

problem].

xq(t+ 1) =AAAqxq(t) + CCCqn(t+ 1)

y(t) = CCCT
q xq(t) + δ(t) (9)

where

AAAq =




A1 A2 . . . Ar O . . . O O

I O . . . O O . . . O O

O I O O . . . O O
...

. . .
...

O O O O . . . I O




is the 2q×2q state transition matrix and CCCq = [I,O, . . . ,O]T

denotes the 2q × 2 output matrix.

Based on (9) and on the available prior knowledge, the

Kalman filter/predictor recursions can be written down as fol-

lows

x̂q(t|t− 1) =AAAqx̂q(t− 1|t− 1)

Pq(t|t− 1) =AAAqPq(t− 1|t− 1)AAAT
q + CCCqρCCC

T
q

e(t) = y(t) −CCCT
q x̂q(t|t− 1)

S(t) = CCCT
q Pq(t|t− 1)CCCq +∆(t)

Lq(t) = Pq(t|t− 1)CCCqS
−1(t)

x̂q(t|t) = x̂q(t|t− 1) + Lq(t)e(t)

Pq(t|t) = Pq(t|t− 1)− Lq(t)S(t)L
T
q (t). (10)

Since we have assumed that δ(t) = 0 for t ≤ t0, the al-

gorithm should be started at the instant t0 + 1, with ini-

tial conditions x̂q(t0|t0) = [yT(t0), . . . ,y
T(t0 − q + 1)]T,

Pq(t0|t0) = Oq, and stopped at the instant t0 +m+ r, after

reading r undisturbed signal samples at the end of the cor-

rupted fragment. The filtered state vector at the termination

point t0 +m+ r has the form x̂q(t0 +m+ r|t0 +m+ r) =
[y(t0+m+ r), . . . ,y(t0+m+1), ŝ(t0+m), . . . , ŝ(t0+1),
y(t0), . . . ,y(t0 − r + 1)]T where ŝ(t0 + 1), . . . , ŝ(t0 + m)
is the block of interpolated samples. Since, in the case

considered, the signal estimates yielded by the Kalman algo-

rithm do not depend on measurements collected at instants

t0 + m + r + 1, t0 + m + r + 2, etc., there is no point in

continuing operation of the Kalman filter after reaching the

point t0 +m+ r.

3.2. Signal Prediction and Detection of Noise Pulses

Similar to [2], our pulse detection scheme will be based on

monitoring signal prediction errors. Denote by ε(t|t − 1) =

y(t)−
∑r

i=1 Âi(t)y(t − i) = [ε1(t|t− 1), ε2(t|t− 1)]T the

one-step-ahead signal prediction error. The stereo detection

alarm is started at the instant t0 + 1 if in at least one of the

channels the magnitude of the prediction error εj(t|t− 1) ex-

ceeds µ times its standard deviation

|εj(t0 + 1|t0)| > µσj(t0 + 1|t0), j = 1 and/or 2 (11)

where σ2
j (t0 + 1|t0) = [ρ̂(t0)]jj , and µ is a constant multi-

plier, usually chosen in the range [3,5]1.

The test is then extended to multi-step-ahead prediction

errors e(t) = [e1(t), e2(t)]
T yielded by the Kalman filter-

ing algorithm initialized at the instant t0. Detection alarm is

stopped at the instant t = t0 + m if r consecutive predic-

tion errors take for both channels sufficiently small values:

d̂1(t) = d̂2(t) = 0, t = t0 +m+ 1, . . . , t0 +m+ r where

d̂j(t) =

{
0 if |ej(t)| ≤ µσj(t)
1 if |ej(t)| > µσj(t)

, j = 1, 2 (12)

σ2
j (t) = [Σ(t)]jj , j = 1, 2, and Σ(t) = cov[e(t)] =

CCCT
q Pq(t|t − 1)CCCq denotes the corresponding covariance ma-

trix. Alternatively, detection alarm is terminated if t − t0
reaches its maximum allowable value equal to mmax.

Signal reconstruction is governed by the following noise

covariance scheduling based on (12):

1When µ is set to 3, condition (11) is usually referred to as “3-sigma”

outlier detection rule.



∆(t) =





[
0 0
0 0

]
if d̂1(t) = d̂2(t) = 0

[
0 0
0 γ

]
if d̂1(t) = 0 ∧ d̂2(t) = 1

[
γ 0
0 0

]
if d̂1(t) = 1 ∧ d̂2(t) = 0

[
γ 0
0 γ

]
if d̂1(t) = d̂2(t) = 1

(13)

γ → ∞ .

Note that when [∆(t)]jj → ∞, the sample yj(t) is regarded

as corrupted with infinite-variance noise and – as such – re-

jected and scheduled for interpolation; when [∆(t)]jj = 0
the sample is preserved without changes.

3.3. Adaptive Detection and Interpolation

According to [5], the AR-model based reconstruction of sam-

ples called in question by the outlier detector can be carried

out independently – without any information loss – for each

local analysis frame starting and ending with r undistorted

samples y(t). For this reason we will focus our attention on

a single detection episode. Suppose that condition (11) is met

at instant t0 + 1. Once this happens, the parameter tracking

procedure is temporarily stopped, and the Kalman filter based

detection procedure is started. We will introduce two impor-

tant modifications. First, the true model parameters will be

replaced with their most recent estimates Â1(t0), . . . , Âr(t0)
and ρ̂(t0). Second, the fixed-order Kalman filter, presented

in Section 3.1, will be replaced with the variable-order one.

Such modification is possible due to the special structure of

the matrices AAAq , CCCq and Pq(t0|t0) incorporated in (10). Tak-

ing advantage of this structure, one can show that the order of

the Kalman filter (10) can be – without affecting estimation

results – gradually increased, starting from r+1 at the instant

t0+1, until the stopping condition is met. The variable-order

Kalman filter offers significant computational savings over its

fixed-order (q = qmax = 2r +mmax) version.

3.4. Algorithm

Denote by Θ̂r(t) = [θ̂1(t)|θ̂2(t)] , where θ̂j(t) = [α̂T
j1(t),

. . . , α̂T
jr(t)]

T is the vector of coefficients characterizing the

j-th channel, the 2r× 2 matrix made up of the estimated pro-

cess coefficients, and by

Θ̂q(t) =

[
θ̂1(t) θ̂2(t)
0q−r 0q−r

]
, q > r

– the analogous matrix extended with zeros. Denote by X(1)

and X(2) the vectors made up of the first column and the sec-

ond column of the matrix X, respectively. Denote by X(1,2)

the matrix made up of the first two columns of X. Finally, let

q(t) = r + t − t0. The adaptive algorithm which combines

(10) with (12)-(13) can be summarized as follows:

Initialization

x̂r(t0|t0) = [yT(t0), . . . ,y
T(t0 − r + 1)]T

Pr(t0|t0) = Or

Time update step (t ≥ t0 + 1)

ŷ(t|t− 1) = Θ̂T
q(t)−1(t0)x̂q(t)−1(t− 1|t− 1)

e(t) = y(t)− ŷ(t|t− 1) = [e1(t), e2(t)]
T

x̂q(t)(t|t− 1) =

[
ŷ(t|t− 1)

x̂q(t)−1(t− 1|t− 1)

]

Hq(t)−1(t) = Pq(t)−1(t− 1|t− 1)Θ̂q(t)−1(t0)

Σ(t) = Θ̂T
q(t)−1(t0)Hq(t)−1(t) + ρ̂(t0)

=

[
σ2
1(t) σ12(t)

σ12(t) σ2
2(t)

]

Pq(t)(t|t− 1) =
[

Σ(t) HT
q(t)−1(t)

Hq(t)−1(t) Pq(t)−1(t− 1|t− 1)

]

Outlier detection step

d̂j(t) =

{
0 if |ej(t)| ≤ µσj(t)
1 if |ej(t)| > µσj(t)

, j = 1, 2

Measurement update step (t ≥ t0 + 1)

Case 1: if d̂1(t) = d̂2(t) = 0 or t ≥ t0 +mmax then

Lq(t)(t) = P
(1,2)
q(t) (t|t− 1)Σ−1(t)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + Lq(t)(t)e(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− Lq(t)(t)Σ(t)LT
q(t)(t)

Case 2: if d̂1(t) = 0 and d̂2(t) = 1 then

lq(t)(t) =
1

σ2
1(t)

P
(1)
q(t)(t|t− 1)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + lq(t)(t)e1(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− σ2
1(t)lq(t)(t)l

T
q(t)(t)

Case 3: if d̂1(t) = 1 and d̂2(t) = 0 then

lq(t)(t) =
1

σ2
2(t)

P
(2)
q(t)(t|t− 1)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + lq(t)(t)e2(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− σ2
2(t)lq(t)(t)l

T
q(t)(t)

Case 4: if d̂1(t) = d̂2(t) = 1 then

x̂q(t)(t|t) = x̂q(t)(t|t− 1)

Pq(t)(t|t) = Pq(t)(t|t− 1)



3.5. Closing Detection Gaps

Detection alarms may not form solid blocks of “ones” pre-

ceded and succeeded by at least r “zeros”. While detection

alarms raised for unipolar noise pulses usually have this prop-

erty, for bipolar pulses, or pulses of even more complicated

shapes, it often happens that the outlier detector accepts a

few samples located in the transition zone between the pos-

itive and negative peaks of the click waveform – even though

such measurements are not reliable. It was observed that such

“accidental acceptancies” of samples located in the middle of

long-lasting artifacts can adversely affect reconstruction re-

sults. For this reason it is recommended that all detection

gaps of length smaller than r are removed prior to reconstruc-

tion. Of course, each time when a detection alarm is modi-

fied, the Kalman filter algorithm should be rerun to incorpo-

rate changes.

4. EXPERIMENTAL RESULTS

To evaluate the proposed approach we used 5 clean audio

recordings, sampled at the rate of 48 kHz, contaminated with

real click waveforms extracted from silent parts of old gramo-

phone recordings. Our repository of clicks was made up of

1003 pairs of click waveforms (found in the left and right

channel, respectively). Clean audio recordings contained

from 25 to 33 seconds of classical music. The excerpts were

chosen so as to cover different temporal and spectral features

of audio signals. Prior to adding noise pulses, all audio sig-

nals were scaled so as to make their energy in the corrupted

part identical. The 20 second long click template, which was

added to clean audio (the same for all recordings), consisted

of 3200 pairs of equally spaced noise pulses picked at ran-

dom from the click database: 807 pulses corrupting the left

channel only, 800 pulses corrupting the right channel only,

and 1593 pulses corrupting both channels. The total number

of corrupted samples was equal to 44013, which constitutes

2,3% of all samples in the analyzed fragment.

The results of comparison of the classical AR-model

based approach with that based on the VAR model are shown

in Table 1. Our evaluation was performed using the Per-

ceptual Evaluation of Audio Quality (PEAQ) tool [9]. Note

that in all cases considered, the PEAQ scores obtained us-

ing the VAR model are better (i.e., closer to 0) than those

obtained using the AR model. Listening tests, performed on

real archive audio files, support these findings.

5. CONCLUSION

The problem of elimination of impulsive disturbances from

stereo audio recordings was solved using the vector autore-

gressive modeling technique. The proposed approach com-

bines a new model-stability-preserving identification algo-

rithm – the Whittle-Wiggins-Robins algorithm with exponen-

Table 1: Comparison of the PEAQ scores obtained for the re-

sults of univariate (AR) and multivariate (VAR) processing of

5 artificially corrupted audio recordings: PEAQin denotes the

score of the input (corrupted) recording, PEAQout denotes

the score of the processed recording, and PEAQref denotes

the score obtained when interpolation of the corrupted sam-

ples is based on exact knowledge of pulse locations. Interpre-

tation of PEAQ scores: 0 = imperceptible (signal distortions),

−1 = perceptible but not annoying, −2 = slightly annoying,

−3 = annoying, −4 = very annoying.

Rec. PEAQin Model PEAQref PEAQout

1 -3,666 AR -0,006 -0,531

VAR -0,001 -0,493

2 -3,733 AR -0,023 -1,159

VAR -0,030 -1,109

3 -3,458 AR -0,350 -0,907

VAR -0,248 -0,772

4 -3,640 AR -0,234 -1,255

VAR -0,205 -1,243

5 -3,645 AR -0,026 -0,646

VAR -0,053 -0,629

tial data weighting – with the variable-order Kalman filter,

used to detect and interpolate irrevocably distorted signal

samples. It was shown that restoration results improve when

both stereo channels are analyzed and processed jointly.
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