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ABSTRACT

Subject-based approaches are proposed to automatically dis-
criminate healthy people from those with Parkinson’s Disease
(PD) by using speech recordings. These approaches have
been applied to one of the most used PD datasets, which con-
tains repeated measurements in an imbalanced design. Most
of the published methodologies applied to perform classifi-
cation from this dataset fail to account for the dependent na-
ture of the data. This fact artificially increases the sample
size and leads to a diffuse criterion to define which subject is
suffering from PD. The first proposed approach is based on
data aggregation. This reduces the sample size, but defines a
clear criterion to discriminate subjects. The second one han-
dles repeated measurements by introducing latent variables in
a Bayesian logistic regression framework. The proposed ap-
proaches are conceptually simple and easy to implement.

Index Terms— Bayesian logistic regression, Data aggre-
gation, Latent variable, Machine learning, Parkinson’s dis-
ease, Voice features.

1. INTRODUCTION

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder after Alzheimer’s disease, affecting
one in every 100 persons above the age of 65 years [1]. Deple-
tion of dopaminergic nigrostriatal neurons gives rise to alter-
ations in movement (tremor, rigidity, slow movements and/or
unstable posture). Voice and speech, as dependent on move-
ment of the articulators, are not spared. Non-dopaminergic
changes can also affect language, cognition and mood, which
can impact on communication [2].

Voice recordings have been used as a potential biomarker
to diagnose some voice-related diseases. [3] provide a current
view of automatic speech signal analysis for clinical diagno-
sis and assessment of speech disorders. In this context, [4]
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considered both linear and non-linear measures to discrim-
inate healthy people from those with PD. Voice recordings
have also been used to assess the progression of PD by relat-
ing voice characteristics to clinicians’ ratings [5].

Telephone monitoring of PD has attracted interest as a
potential mean of assessing this disorder. The current tech-
nologies allow the implementation of non-invasive and low
cost procedures that make the assessment of PD easier both
for patients and doctors. Purposeful-built devices have been
developed to record various signals which can be associated
with PD symptom severity [6]. Such technology also opens
up the possibility of not just diagnosis and assessment, but
also therapy being remotely performed [7].

Three steps are involved to discriminate healthy people
from those with PD. Firstly, algorithms to extract features
from the recordings must be used. Later, a suitable set of
features must be selected. These two steps constitute the pre-
processing stage. Finally, pattern recognition algorithms must
be used to classify new individuals. The success of the classi-
fication highly depends on the good discriminatory properties
of the selected features.

[4] presented one of the most used PD datasets consisting
on 22 features extracted from 195 recordings of sustained /a/
phonations. These recordings belong to 32 people from both
sexes, 24 of which were diagnosed with PD. Seven record-
ings were obtained from three subjects (S21, S27 and S35)
and 6 from the others, leading to an imbalanced design. This
dataset is available online at UCI Machine Learning Reposi-
tory (http://archive.ics.uci.edu/ml/datasets/Parkinsons).

We have reviewed more than thirty different papers con-
sidering these data for feature selection and classification or
only for classification. [8] compare their proposals with the
ones from fifteen previously published papers that use these
data. Very different overall accuracy rates were obtained de-
pending on many factors, i.e., used features, reduction on
features, classification methods and validation schemes. A
common point among all the used approaches is that they are
based on independent sample schemes instead of on repeated
measurement frameworks. Each subject has six (or seven) re-
lated measures which are not independent. Treating the mea-
sures obtained from different recordings of the same subject
as independent may produce wrong estimated parameters in



many independence-based classifiers, which leads to wrong
classifications. Besides, this treatment of the data artificially
increases the sample size. Even more, incoherences are ob-
tained when classifying subjects by using replicated samples,
because it happens that some recordings of the same person
can be classified as healthy and some as PD.

In this paper, subject-based approaches are considered to
discriminate healthy people from those with PD. A discus-
sion on the way the replications can be properly treated is
provided. The idea of using latent variables in a Bayesian lo-
gistic regression model is used to provide a predictive model
that can handle replications in an efficient way.

2. BACKGROUND AND MOTIVATION

Building a predictive model with minimal bias is intended
in this context, i.e., to maximize the generalization of the
predictions so as to perform well with new samples. [4] used
a Super Vector Machine (SVM) classifier and also performed
an exhaustive search to select the optimal subset of features.
They found that the combination of the features Harmonic-
to-Noise ratio (HNR), Recurrence Period Density Entropy
(RPDE), Detrended Fluctuation Analysis (DFA), and Pitch
Period Entropy (PPE) obtained the best overall classification
performance. Their best model provided a 91.4% accuracy
rate based on a bootstrap resampling. However, this does not
reflect a true prediction accuracy rate for future observations,
since the model is trained and tested on the same sample [9]
and the independence condition for the bootstrap resampling
is not met [10].

Later, this dataset has been extensively used to analyze the
global accuracy rates for many classifiers in different cross-
validation schemes as one-leave-out, k-fold or stratified sam-
pling (e.g., [8, 11]). Each subject has six (or seven) related
measures which are not independent. Independence-based
classification methods should not be used when data have
been obtained by replicating recordings from the same sub-
jects. This fact artificially increases the sample size. Even
more, this leads to a diffuse criterion to decide when a subject
should be classified as suffering from PD. For example, if the
195 22-dimensional vectors are used as training and testing
datasets for a simple logistic regression, it is obtained that 4
out of 24 PD subjects and 4 out of 8 healthy subjects have dif-
ferent predictions in their own recordings. This means 25%
of the subjects (50% of the healthy and 16.7% of the PD) have
incoherence in any of their recording predictions. Note that
in this case the global accuracy rate considering the record-
ings as independent would be 89.7% (72.9% for healthy and
95.2% for PD people).

Although applying cross-validation schemes is a usual
practice in this context, neither the recordings in the training
set nor in the testing set are independent. [12] noticed that the
traditional cross-validation methods divide recordings from
the same individual in the training set and testing set, creat-

ing an artificial situation untypical of a real testing scenario.
They defined an adapted cross-validation method named one-
leave-individual-out. All the recordings of one individual are
used for the testing set whereas all the recordings from the
remaining individuals are used for the training set. This is
performed for all the subjects and the accuracy rates are av-
eraged. Nevertheless, the underlying independence problem
remains.

The next sections discuss and propose two subject-based
approaches that solve this problem.

3. DATA AGGREGATION

[13] observed that these replicated data can not be treated
with the traditional machine learning algorithms, since the
data nature is dependent. They proposed to aggregate re-
lated data before learning by using some different functions as
mean, minimum, maximum or a linear trend prediction. They
compared their results to the ones obtained with the original
dataset and obtained better global accuracy rates for 6 out of
14 classifiers. However, it must be taken into account that
the sampling size was reduced from 195 to 32. Then, data
aggregation is considered as a preprocessing step and, later,
any machine learning algorithm based on independent sam-
ples may be used. This avoids the problem of defining which
subject is healthy or not as it happens with the recordings.

There are many other functions that can be used to aggre-
gate replicated data. For example, median is an interesting
robust statistics for central tendency. Another option is to ag-
gregate data by using the α−trimmed mean, which is a hybrid
of the mean and the median. The basic idea is to order all the
elements and discard α/2 · 100% of the elements at the be-
ginning and α/2 · 100% at the end, then calculate an average
value using the remaining ones. Both median and α−trimmed
mean are less sensitive to extreme values than the arithmetic
mean. Here, an experiment considering the mean (A1), the
median (A2), and the 1/3−trimmed mean (A3) as functions
to aggregate data is performed. In this case, the 1/3−trimmed
mean discards the lowest and the largest measurement of each
individual. Feature selection is not an objective in this paper,
so the best four voice characteristics obtained in [4] are con-
sidered here, i.e., HNR, RPDE, DFA, and PPE.

Previously to the data aggregation the within-subjects
variability is analyzed. Generalized linear mixed models
for repeated measures are applied to the four voice char-
acteristics. One between-subjects variable (status) and one
within-subjects variable (repeated measurements) are consid-
ered. The interaction is not statistically significant for HNR,
RPDE, DFA, and PPE (the p-values are 0.367, 0.230, 0.707,
and 0.935, respectively). This suggests that the measure-
ments across the replications are independent on the health
status. Then, the main effects are analyzed. The main effect
for the within-subjects variable is not statistically significant
for the four feature variables (the p-values are 0.514, 0.255,



0.269, and 0.375, respectively). This means that the variabil-
ity in the measurements within subjects is small for the four
voice characteristics. Using these repeated measures within
subjects as if they were independent leads to an artificially
increased sampling size that would reduce the true variance
with respect to an independent sample with the same sample
size. The between-subjects effects indicate that Parkinson’s
patients provided higher means than healthy people for PPE
and lower for HNR (the p-values are 0.029 and 2.76·10−5, re-
spectively). No significant differences were found for RPDE
and DFA at a 0.05 level (the p-values are 0.057 and 0.177,
respectively).

A cross-validation scheme is applied to the original and
transformed data considering a stratified sampling to choose
75% for the training sample and 25% for the testing sample.
Note that the three aggregated schemes learn from 18 PD and
6 healthy individuals, and are applied to 6 and 2, respectively.
Averages from 100 iterations are obtained by using several
classifiers with the default parameters of WEKA [14]. Note
that each classifier could be tuned to their optimal (or near
optimal) parameters and some changes on the results may be
experienced. Table 1 shows the averaged accuracy rates.

Classifiers A1 A2 A3 Original
Bayes Net (K2) 77.63 78.13 78.13 80.45
Bayes Net (TAN) 78.13 78.13 78.13 83.80
Naive Bayes 74.88 73.00 76.25 78.81
SVM-SMO 75.00 75.00 74.88 76.07
DTNB 77.50 77.88 77.88 83.96
One R 71.88 72.88 71.75 86.82
Zero R 75.00 75.00 75.00 75.39
PART 79.13 79.00 79.13 85.38
Decision Table 77.63 78.00 78.00 84.12
Decision Stump 78.13 78.50 78.50 82.19
J48 79.38 79.38 79.50 85.30
NBTREE 77.50 78.13 78.13 84.87
Random Forest 77.25 76.63 76.38 88.29
Simple Cart 79.50 81.25 82.00 85.17
Logistic 88.25 87.63 87.75 86.79
Simple Logistic 87.88 87.50 87.63 85.88
MultiPerceptron 85.88 85.63 84.50 87.21
RBF Network 73.75 74.25 73.38 84.68
IB1 70.38 72.38 72.63 87.08
IB5 77.88 78.00 79.50 85.83
Kstar 76.38 74.13 72.75 87.81
ClassClustering 62.38 62.13 62.00 66.43
ClassRegression 81.63 83.50 82.75 86.95
HyperPipes 75.63 77.38 80.88 79.61
FVI 75.25 77.00 71.38 61.80

Table 1. Global accuracy rates for aggregated and original
datasets.

The three aggregated schemes provide similar accuracy
rates because of the homogeneity of the replicated measure-
ments. The results provided by logistic, simple logistic and
multiple perceptron (neural networks) with the WEKA de-
fault parameters are remarkable. The results are good since
models are learning from only 24 individuals (18 PD and 6
healthy) and tested on 8 ones (6 PD and 2 healthy). Note
that the classifiers applied to the original data learn from 146
recordings and test on 49 ones, and different predictions may
be associated to the same individual. Then, the sampling size
has been artificially increased and the classifiers provide no
logical interpretations, since they are based on the recordings
and not on the subjects.

The information provided from replications can be used
in a specific repeated measurement design. The next section
proposes and applies an alternative modelling method to ad-
dress repeated measurements in this context.

4. ALTERNATIVE MODELLING

A logistic regression model with latent variables is introduced
to address repeated measurements in a classification context
from a Bayesian viewpoint.

Let Y be the response variable, Xk, k = 1, . . . ,K, the
measured variables (covariates), and Zk, k = 1, . . . ,K, the
(unknown) latent variables. The latent variables are used in
the logistic regression as if they were observed, and then they
are imputed through the relationship with the repeated mea-
surements and the prior distribution, i.e.:

Yi ∼ Bernoulli(pi),

logit(pi) = β0 + β1Z1i + β2Z2i + · · ·+ βkZki,

Xkij = Zki + εkij ,

εkij ∼ Normal(0, σ2
k),

Zki ∼ FZki
,

βk ∼ Fβk
,

σk ∼ Fσk
,

where i = 1, . . . , n, denotes the subject, j = 1, . . . , Ti, de-
notes the repeated measures for subject i, k = 1, . . . ,K, de-
notes the covariate, pi is the proportion parameter, and εkij
is the error parameter. FZki

, Fβk
, and Fσk

represent generic
initial distributions for the latent variables, the regression pa-
rameters, and the variance parameter of the error, respectively.

In Bayesian methodology, the initial knowledge about the
parameters (prior distribution) is combined with the model
considering the observed data (likelihood) to provide the pos-
terior distribution. The posterior distribution contains all the
information about the model parameters. This methodology
allows that the initial information from historical data or ex-
perts can be included in the model through the prior distri-
bution. This can be a great advantage when information dif-
ferent from the current data is obtained. If no information is
available, flat distributions can be used instead.



This approach uses the relationship between the covari-
ates and the latent variables jointly with the prior distributions
to achieve posterior estimations of the latent variables. The
approach considers the latent variables as missing data and
provides imputations from the distribution conditioned on the
observed variables and the parameters. The estimations from
the latent variables are used to estimate the regression param-
eters in the logistic model. The variability among the repeated
measures is taken into account by following this procedure.

This general method is applied to the problem in hand by
considering the four features HNR (X1), RPDE (X2), DFA
(X3), PPE (X4), and the status (Y ) as response variable (0
healthy and 1 PD). In this case, no historical or expert infor-
mation has been obtained independently of the data. Then,
the following prior distributions are considered:

Zki ∼ Normal(0, 100),

βk ∼ Normal(0, 100),

σk ∼ Unif(0, 10).

The posterior estimates are obtained by using Markov
Chain Monte Carlo (MCMC) methods [15]. WinBUGS
software has been used to implement the MCMC simula-
tions [16]. This procedure has been implemented with the
same specifications described in the previous section for the
cross-validation scheme with 100 iterations. The averaged
results are presented in Table 2. The following notation is
followed: TP (True Positive), TN (True Negative), FP (False
Positive), FN (False Negative), and n = 32.

Mean SD

Accuracy rate (TN+TP)/n 0.804 0.102
Sensitivity TP/(TP+FN) 0.965 0.090
Specificity TN/(TN+FP) 0.320 0.314
Precision TP/(TP+FP) 0.815 0.080

Table 2. Accuracy rate and other indicators for the approach
with four covariates.

This approach is providing an averaged accuracy rate of
0.804, which is better than 20 (out of 25) classifiers analyzed
by aggregating data in the same cross-validation scheme.
Note that there is a low specificity (0.320) with a high stan-
dard deviation (0.314). This is due to the fact that, for each
iteration, there is only 6 healthy subjects in the training set
and 2 in the testing test. The results obtained in Table 2 can
be improved by considering interactions between the covari-
ates. The fact that the observed variables are related suggests
that the obtained results could be improved by considering
second-order interactions related to the highly correlated co-
variates HNR, RPDE, and PPE. In this case, the following
modification is performed:

logit(pi) = β0 + β1Z1i + β2Z2i + β3Z3i + β4Z4i +

β5Z1iZ2i + β6Z1iZ4i + β7Z2iZ4i.

Following the same cross-validation scheme used through
the paper, the results are presented in Table 3. The WinBUGS
code is presented in the Appendix.

Mean SD

Accuracy rate (TN+TP)/n 0.904 0.087
Sensitivity TP/(TP+FN) 0.972 0.079
Specificity TN/(TN+FP) 0.700 0.326
Precision TP/(TP+FP) 0.916 0.089

Table 3. Accuracy rate and other indicators for the model with
four covariates and three second order interactions.

By considering interactions, the accuracy rate has in-
creased to 0.904, which is a very high rate for an experiment
with this small sample size. Sensitivity maintains at the same
level, whereas precision substantially increases. The speci-
ficity is dramatically increased from 0.320 to 0.700. Its stan-
dard deviation keeps at the same level as in the model without
interaction, but for a much higher mean estimation. Then, the
model with interactions is able to classify the healthy people
better, which is a problem in this dataset, due to the reduced
number of healthy people.

5. CONCLUSION

Many experimental data are collected in repeated measure-
ment statistical designs. When replications on the same sub-
jects are used, conventional machine learning methods are
not appropriate since observations are no longer independent.
Then, alternative methods as the ones proposed in this paper
must be used to address repeated measurements.

The proposed approaches are conceptually simple and
easy to implement. However, there is space for improving.
The Bayesian approach can be extended by a generalized lin-
ear model allowing different types of link functions that may
provide better fittings. Also, implementing the Metropolis-
Hasting and Gibbs sampling algorithms by developing the
distributions necessary to generate the Markov chains is in-
teresting. This would give more control to the user than
simply using WinBUGS code. Although the computational
cost is not high with WinBUGS, it may be reduced.

The success of the classification also highly depends on
the good discriminatory properties of the selected features,
so integrating specific feature selection algorithms is impor-
tant. The approach could also be extended to allow ordinal
response data, which could be useful to classify PD patients
by severity levels with the Hoehn and Yahr’s scale.

Although there have been important advances in the diag-
nosis and progression of Parkinson’s disease by using speech
signals, there is a scientific challenge to develop reliable pro-
cedures that can be included into medical protocols in neuro-
logical units. Also, telemonitoring is a current challenge.



6. APPENDIX

The WinBUGS code is presented here for the approach con-
sidering interactions, i.e.:

model{
for(i in 1:n){

Y[i] ˜ dbern(p[i])
logit(p[i]) <- B[8] + B[1]*Z1[i] +
B[2]*Z2[i] + B[3]*Z3[i] + B[4]*Z4[i] +
B[5]*Z1[i]*Z2[i] + B[6]*Z1[i]*Z4[i] +
B[7]*Z2[i]*Z4[i]
for(j in 1:T[i]){
X1[i,j] ˜ dnorm(Z1[i],Tw[1])
X2[i,j] ˜ dnorm(Z2[i],Tw[2])
X3[i,j] ˜ dnorm(Z3[i],Tw[3])
X4[i,j] ˜ dnorm(Z4[i],Tw[4])

}
Z1[i] ˜ dnorm(0,0.01)
Z2[i] ˜ dnorm(0,0.01)
Z3[i] ˜ dnorm(0,0.01)
Z4[i] ˜ dnorm(0,0.01)

}
for(h in 1:8){

B[h] ˜ dnorm(0,0.001)
}
for(k in 1:4){

Tw[k] <- pow(Sw[k],-2)
Sw[k] ˜ dunif(0,10)

}
}

REFERENCES

[1] M. C. de Rijk, L. J. Launer, K. Berger, M. M. Breteler,
J. F. Dartigues, M. Baldereschi, L. Fratiglioni, A. Lobo,
J. Martinez-Lage, C. Trenkwalder, and A. Hofman,
“Prevalence of parkinsons disease in europe: a collab-
orative study of population-based cohorts,” Neurology,
vol. 54, no. 11, pp. S21–S23, 2000.

[2] N. Miller, “Communication changes in Parkinson’s dis-
ease,” Rev. Logopedia, Foniatrı́a y Audiologı́a, vol. 29,
no. 1, pp. 37–46, 2009.

[3] L. Baghai-Ravary and S. W. Beet, Automatic Speech
Signal Analysis for Clinical Diagnosis and Assessment
of Speech Disorders, Springer Briefs in Electrical and
Computer Engineering - Speech Tecnologies. Springer,
2013.

[4] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman,
and L. O. Ramig, “Suitability of dysphonia measure-
ments for telemonitoring of Parkinson’s disease,” IEEE
Transactions on Biomedical Engineering, vol. 56, no.
4, pp. 1015–1022, 2009.

[5] A. Tsanas, M. A. Little, P. E. McSharry, and L.O.
Ramig, “Nonlinear speech analysis algorithms mapped
to a standard metric achieve clinically useful quantifica-
tion of average Parkinson’s disease symptom severity,”
The Royal Society Interface, vol. 8, no. 59, pp. 842–855,
2011.

[6] A. Tsanas, M. A. Little, P. E. McSharry, and L.O.
Ramige, “Using the cellular mobile telephone net-
work to remotely monitor Parkinson’s disease symptom
severity,” IEEE Transactions on Biomedical Engineer-
ing (submitted), 2013.

[7] S-C. Yin, R. Rose, O. Saz, and E. Lleida, “A study of
pronunciation verification in a speech therapy applica-
tion,” in Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2009, pp.
4509–4612.

[8] M. Hariharan, K. Polat, and R. Sindhu, “A new hy-
brid intelligent system for accurate detection of Parkin-
son’s disease,” Computer Methods and Programs in
Biomedicine, In press.

[9] B. Shahbaba and R. Neal, “Nonlinear models using
dirichlet process mixtures,” Journal of Machine Learn-
ing Research, vol. 10, pp. 1829–1850, 2009.

[10] B. Efron and R. Tibshirani, An Introduction to the Boot-
strap, Chapman and Hall/CRC, 1993.

[11] D. Gil and J. Magnus, “Diagnosing Parkinson by using
artificial neural networks and support vector machines,”
Global Journal of Computer Science and Technology,
vol. 9, no. 4, pp. 63–71, 2009.

[12] C. O. Sakar and O. Kursun, “Telediagnosis of Parkin-
son’s disease using measurements of dysphonia,” Jour-
nal of Medical Systems, vol. 34, pp. 591–599, 2010.

[13] T. Silva and I. Dutra, “T-SPPA trended statistical pre-
processing algorithm,” in The International Confer-
ence on Digital Information Processing and Communi-
cations, J. Platos V. Snasel and E. El-Qawasmeh, Eds.
2011, vol. I, pp. 118–131, Springer-Verlag.

[14] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten, “The
WEKA data mining software: an update,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp.
10–18, 2009.

[15] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,
Markov Chain Monte Carlo in practice, Chapman and
Hall, 1996.

[16] I. Ntzoufras, Bayesian Modeling Using WinBUGS, Wi-
ley Series in Computational Statistics. Wiley, 2011.


