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ABSTRACT
The gridless compressive-sensing methods form the most re-
cent class of approaches that have been proposed for estimat-
ing the frequencies of sinusoidal signals from noisy measure-
ments. In this paper we review these methods with the main
goal of providing new insights into the relationships between
them and their links to the basic approach of nonlinear least
squares (NLS). We show that a convex relaxation of penalized
NLS leads to the atomic-norm minimization method. This
method in turn can be approximated by a gridless version of
the SPICE method, for which the dual problem is shown to be
equivalent to the global matched filter method.

Index Terms— frequency estimation, sparse signal pro-
cessing, covariance estimation

1. INTRODUCTION

We will make frequent use of the following abbreviations and
notations.

Abbreviations: ANM = Atomic norm minimization; FO-
CUSS = Focal underdetermined system solver; GMF = Global
matched filter; IAA = Iterative adaptive approach; i.i.d. =
independent and identically distributed; ML = Maximum
likelihood; NLS = Nonlinear least squares; SDP = Semidef-
inite program; SNR = Signal to noise ratio; SPICE = Sparse
iterative covariance-based estimation; GL-SPICE = Gridless
SPICE; s.t. = subject to; w.r.t. = with respect to.

Notation: ‖·‖1, ‖·‖2 and ‖·‖F are the `1, `2 and Frobenius
norms, respectively. x, x and X denote scalars, vectors and
matrices. x> and x∗ are the transpose and conjugate trans-
pose. A � B means (A−B) is positive semi-definite. A1/2

is a square root of A � 0. tr{A} is trace of A. Re{x} de-
notes the real part of x and |x| is the magnitude of x.

We consider the problem of estimating the frequencies of
a number of sinusoidal signals from noisy measurements. Let

a(ω) = [1 eiω · · · ei(N−1)ω]>/
√
N, ω ∈ [−π, π) (1)

denote the vector whose entries are the N uniform samples
of a sinusoid with frequency ω and unit energy. Using this

notation we can describe the measurement vector y ∈ CN×1

as:
y = A(ω)s + e, (2)

where

A(ω) = [a(ω1) · · · a(ωn)]

ω = [ω1 · · · ωn]
>

s = [s1 · · · sn]>,
(3)

(ωk, sk) are the frequency and amplitude of the k-th sinu-
soidal component, e ∈ CN×1 is the noise vector, and n is the
assumed number of components; we let n0 denote the true
value of n. The problem is to estimate ω from y; once ω is
estimated we can obtain an estimate of s by solving a simple
least-squares problem.

There are a host of methods that can be used for frequency
estimation (see, e.g., the book [1]). A relatively recent sub-
set of high-resolution methods make use of ideas from the
literature on sparse estimation and are usually designated us-
ing the term “compressive sensing approaches” owing to their
ability to perform well based on a limited number of obser-
vations/measurements. Examples of such methods include
FOCUSS [2], GMF [3] and SPICE [4]; a related competitive
method is IAA [5] which, however, is not directly based on
sparse estimation ideas. For a recent review of some these
methods the reader can consult the paper [6].

Similarly to the non-parametric method of the peri-
odogram (e.g. [1]), the compressive sensing methods referred
to above rely on a frequency grid and thus their estimates
are confined to the set of grid points. Such a quantization
of the frequency variable induces an estimation bias that be-
comes statistically significant as N or SNR increases. To
overcome this bias issue a recent trend in the literature on
frequency estimation has been to propose so-called grid-
less compressive-sensing methods that treat the frequencies
as continuous (as opposed to quantized) parameters (these
methods are sometimes said to perform compressive sensing
‘off the grid’).

In this paper we will review the following gridless
compressive-sensing methods for frequency estimation: ANM,



GL-SPICE, and GMF (see [7], [8] and [9]). Our derivations
of these methods are simpler than the original derivations in
the cited papers, and their motivations provided here are con-
sequently clearer. In addition, we show how these methods
are related to one another as well as to the basic approach of
NLS.

2. BASIC NLS AND A PENALIZED FORM

This method, which coincides with the ML in the case of nor-
mal i.i.d. noise, consists of solving the following minimiza-
tion problem:

min
ω,s
‖y −A(ω)s‖22. (4)

The difficulty of this (multimodal) problem limits the practi-
cal usage of NLS, despite the statistically sound character of
this method. On top of this hardness we have the additional
problem of determining an appropriate value of n (i.e. esti-
mating n0). A possible way of tackling the latter problem is
to consider the following penalized form of (4):

min
ω,s

λ‖s‖1 + ‖y −A(ω)s‖22, (5)

where λ ≥ 0 is a weight and the ‖ · ‖1 norm penalty is used
to enforce sparsity on s. The idea behind (5) can be explained
as follows: using a priori knowledge we can usually choose n
such that it is greater than n0; this means that the amplitude
vector s has n − n0 entries equal to zero. Then there is a
range of values of the penalty’s weight λ in (5) for which
these zero entries of s can be reliably identified (and hence n0
determined) from the estimates provided by (5) . Note that in
the case of grid-based methods (see, e.g., [2–6]), the {ωk} in
(5) would be pre-specified (viz., they will be the grid points)
and n would be much larger than N (to keep the quantization
bias small). In sharp contrast to this, {ωk} in (5) are variables,
and typically n ≤ N (an assumption that we make in what
follows).

Finding an appropriate value for λ in (5) and deciding
which elements of the estimated s are insignificant (i.e. theo-
retically zero) is a problem in itself that is beyond the scope of
this paper. Our main focus here is on methods for solving (5),
at least approximately. Clearly, (5) is not easier that the basic
NLS problem in (4). However, a reparameterization of (5),
followed by a certain relaxation, leads to a feasible problem
as explained in the next section.

3. ANM AS A RELAXATION OF NLS

Consider the following minimization problem:

min
x,z,p,ω

λ

(
x+

n∑
k=1

pk

)
+ ‖y − z‖22

s.t.
[
x z∗

z A(ω)PA∗(ω)

]
� 0

(6)

where
P = diag(p1, . . . , pn) (pk > 0) (7)

and
p = [p1 · · · pn]> (8)

(note that, for the sake of convenience, we assume that all
pk > 0; the case in which some pk = 0 can be treated sim-
ilarly by reducing the value of n accordingly). The above
problem is an augmented version of (5) in the sense that the
minimization of (6) w.r.t. the auxiliary variables x and p
leads to (5). A simple proof of this fact is presented in what
follows.

First we note that the constraint in (6) is equivalent to (see,
e.g., [10]):

z = A(ω)s for some s ∈ Cn×1 (9)

and
xA(ω)PA∗(ω) � zz∗. (10)

Because A(ω) has full column-rank (under the assumption
that n ≤ N and ωk 6= ωp for k 6= p), it follows from (9) and
(10) that

xP � ss∗ ⇔ xI � P−1/2ss∗P−1/2 ⇔ x ≥ s∗P−1s. (11)

Therefore, for fixed s and p, the minimizing x and the vec-
tors z in the feasible set are given by x = s∗P−1s and (9),
respectively. Inserting these expressions in (6) leads to the
problem:

min
p,ω,s

λ

n∑
k=1

(
pk +

|sk|2

pk

)
+ ‖y −A(ω)s‖22. (12)

The minimization of (12) w.r.t. {pk} yields

pk = |sk|, k = 1, . . . , n (13)

and the following concentrated problem:

min
ω,s

λ̃‖s‖1 + ‖y −A(ω)s‖22 (λ̃ = 2λ) (14)

which coincides with (5). With this observation the proof of
the fact that the solution of (5) can be obtained from that of
(6) is concluded.

Continuing our discussion on (6), observe that the matrix

R = A(ω)PA∗(ω) (15)

is Toeplitz, and also that

tr{R} =
n∑

k=1

pk‖a(ωk)‖22 =

n∑
k=1

pk. (16)

Let

R =


r0 r1 · · · rN−1

r∗1
. . .

...
...

. . .
...

r∗N−1 · · · · · · r0

 ; r = [r0, · · · , rN−1]>.

(17)



According to the Carathéodory theorem on Toeplitz matrices
(see, e.g., [1]) there is a one-to-one mapping between the pa-
rameterization of R via ω and p and that via r (under the
constraints that R � 0 and rank(R) = n whenever n ≤ N ).
Exploiting this fact we can re-write (6) as follows:

min
x,z,r

λ(x+ tr{R}) + ‖y − z‖22

s.t.
[
x z∗

z R

]
� 0, rank(R) = n

(18)

and R as given in (17).
The following convex relaxation of (18) is obtained by

omitting the rank constraint:

min
x,z,r

λ(x+ tr{R}) + ‖y − z‖22

s.t.
[
x z∗

z R

]
� 0

(19)

The term tr{R} in (19), which also equals the nuclear norm of
R, is known to penalize the rank of R. This simple observa-
tion motivates the use of the relaxed problem in (19) without
the need for any additional modifications.

The frequency estimation method based on solving (19)
is nothing but the ANM approach proposed in [7, 8] (and ref-
erences therein). Note that once r is estimated, we can obtain
frequency estimates using the Carathéodory decomposition in
(15) and standard subspace-based techniques (see, e.g., [1]).
Also, note that solving (19) as an SDP can be computation-
ally rather expensive for large values of N . A more efficient
algorithm than the off-the-shelves SDP software for solving
(19) has been suggested in [8].

Finally we remark on the case in which we have a good
guess of n0 and hence would be interested in solving the NLS
problem (4) for a small value of n ≈ n0. In such a case we
would select λ in (19) to be small in an attempt to approach
the basic NLS solution; however, the rank-penalizing term
tr{R} in (19) should still receive a significant weight to com-
pensate for the omission of the rank-constraint when passing
from (18) to (19); consequently in this case the penalty term
in (18) should be λ1x+λ2tr{R}, where λ1 can be arbitrarily
small but λ2 should be appropriately selected (alternatively,
the rank constraint should be approximately enforced in a dif-
ferent way).

The above derivation of ANM as a relaxation of a re-
parameterized NLS problem makes an interesting connection
between ANM and the basic method of NLS. In the next sec-
tion we relate ANM to the GL-SPICE approach recently in-
troduced in [8].

4. GL-SPICE AS AN APPROXIMATION OF ANM

As we will see GL-SPICE, like ANM, is basically a covari-
ances estimation method (first the covariance {rk} are esti-
mated and then they are used to obtain frequency estimates).

However, whereas ANM estimates the covariance matrix of
the noise-free signal only, GL-SPICE considers the total co-
variance matrix of signal and noise. Assuming that the ele-
ments of e are i.i.d. with zero mean and variance denoted by
σ, the latter covariance matrix can be written as:

Γ = R + σI =


γ0 γ1 · · · γN−1

γ∗1
. . .

...
...

. . .
...

γ∗N−1 · · · · · · γ0

 (20)

where R is as defined in (15). If we attempt to estimate the
vector

γ = [γ0 . . . γN−1]
> (21)

via the minimization of the following least-squares criterion

‖yy∗ − Γ‖2F (22)

then the result will be the standard sample covariances (as can
be readily verified). Presumably, a statistically more sound
criterion is the following weighted version of (22) (see, e.g.,
[11]):

‖Γ−1/2(yy∗−Γ)‖2F = const.+tr{Γ}+‖y‖22y∗Γ
−1y. (23)

The minimization of (23) by using a grid-based parameter-
ization of Γ was considered in [4] (also see the references
therein) and the so-obtained method was termed SPICE. More
recently, the paper [8] used the Toeplitz parameterization in
(20) of Γ and suggested estimating γ also by minimizing the
SPICE criterion in (23):

min
γ

tr{Γ}+ ‖y‖22y∗Γ
−1y s.t. Γ � 0. (24)

The so-obtained method is called GL-SPICE. Note that the
rank constraint on the R matrix in Γ is ignored in (24), exactly
as it was in the ANM problem in (19).

Let us re-write (24) as an SDP:

min
x,γ
‖y‖22x+ tr{Γ} s.t.

[
x y∗

y Γ

]
� 0. (25)

Similar comments, to those following (19), about algorithms
for efficiently solving the above SDP and on how to obtain
frequency estimates from the solution γ of (25), can be made
here as well. More importantly, observe that (25) can be
viewed as an approximation of the ANM problem in (19) cor-
responding to setting z = y, which is a natural choice given
the fact that now Γ is the covariance matrix of the noisy data
vector y. Interestingly, the weight λ in (19) becomes irrele-
vant in (25), an observation that provides further motivation
to the finding in [4] that the SPICE criterion of (24) does not
necessarily require a careful differential weighting of its two
terms. This fact constitutes an advantage of the SPICE ap-
proach over many other methods (ANM included) which re-
quire a fine-tuning of the penalty’s weight (such as λ in (19)),
or else they may fail to provide satisfactory performance.



5. GMF AS A DUAL OF GL-SPICE

The GMF method (see, e.g., [3, 9]; and also [7]) consists of
solving the following semi-infinite maximization problem:

max
b∈CN×1

Re{b∗y} s.t. |a∗(ω)b|2 ≤ ρ

∀ω ∈ [−π, π), ρ = 1/‖y‖22.
(26)

Note that there exist an infinite number of constraints in (26),
which is why (26) was called a semi-infinite problem. Also,
the specific value of ρ in (26) was chosen only for the conve-
nience of the following analysis; any other positive value of ρ
would work just as well. Finally, once the solution b of (26)
is found, the frequency estimates are obtained as those values
of ω at which |a∗(ω)b|2 is equal (or close) to ρ. The intu-
itive motivation for GMF is that the optimal matched filter b
determined from (26) is likely to have maximum gains at the
frequencies of the sinusoidal components in y and small gains
otherwise as the total gain of the filter is limited.

At first sight the GMF problem above has nothing in com-
mon with the problem solved by either ANM or GL-SPICE.
However, we will show in the following that in fact (26) is
equivalent to the dual of the GL-SPICE optimization problem
in (25). To that end, we prove in the Appendix that the dual
problem for (25) is the following SDP:

max
Z∈C(N+1)×(N+1)

Re{b∗y} s.t. Z =

[
1 −b∗

−b C

]
� 0

tr{C} = ρN, trk{C} = 0, k = 1, . . . , N − 1,

(27)

where trk{C} denotes the sum of the elements on the kth sub-
diagonal of C. Next, we note that for a matrix C satisfying
the conditions in (27) it holds that:

Na∗(ω)Ca(ω) = N tr{Ca(ω)a∗(ω)}

= tr

{
C(I +

N−1∑
k=1

Jke
ikω +

N−1∑
k=1

J∗ke
−ikω)

}
= ρN

(28)

where

Jk =

[
0 0

IN−k 0

]
k = 1, . . . , N − 1. (29)

It follows from this observation that, for Z � 0 (as in (27)),

ρ− |a∗(ω)b|2 = a∗(ω)(C−bb∗)a(ω) ≥ 0 ∀ω ∈ [−π, π)
(30)

and thus the conditions in (27) are sufficient for the constraint
in (26) to hold. The conditions in (27) are also necessary for
the constraint in (26). To see this note that it follows from
standard results on positive trigonometric polynomials (see,

e.g., [12]) that there exists a matrix Q � 0 such that, under
the condition in (26),

ρ− |a∗(ω)b|2 = a∗(ω)Qa(ω). (31)

Let C be defined by the equality

C = Q + bb∗. (32)

Then we have that

a∗(ω)Ca(ω) = ρ (33)

which, in view of the calculation in (28), can hold true if
and only if C satisfies the constraint in (27). Note also that
C− bb∗ � 0. Therefore the constraint in (26) implies
those in (27), which concludes the proof that (26) and (27)
are equivalent problems. More concretely, we have shown
that: for every (b,C) satisfying (27), b satisfies (26) as well;
and, conversely, for every b that satisfies (26) there exists a
C such that (b,C) satisfies (27). Among other things, the
shown equivalence between (26) and (27) can be exploited to
find the solution of the semi-infinite optimization problem in
(26) by solving the SDP in (27).

6. CONCLUSIONS

This paper has presented simple derivations of and new in-
sights into the frequency estimation methods of ANM, GL-
SPICE and GMF, as well as the relationships between them
and their link to the basic approach of NLS. It will hope-
fully stimulate the interest in these recently proposed tech-
niques and, in particular, in a more detailed practical study
of them to determine their possible niche in this competitive
area of signal processing that has numerous applications from
biomedicine and spectroscopy to radar and communications.
Preliminary numerical experience with these methods, as well
as a limited comparison with a few of the existing methods
for frequency estimation (such as IAA), have been reported
in [3, 7–9]. Finally, the hope is that the discussion here can
also inspire novel versions of the methods discussed, with im-
proved performance.

7. APPENDIX: THE GL-SPICE DUAL PROBLEM

The Lagrangian associated with (25) is given by (see, e.g.,
[13])

L(x,γ,Z) = x+Nργ0 − tr
{

Z

[
x y∗

y Γ

]}
(34)

(here Z is the multiplier matrix). Using the following partition
of Z,

Z =

[
z −b∗

−b C

]
(35)



we can write (34) in the following equivalent form:

L(x,γ,Z) = x+Nργ0 − xz + b∗y + y∗b− tr{CΓ}
= (1− z)x+ 2Re{b∗y} − tr{CΓ}+Nργ0

(36)

which is an affine function of x and γ. Making use of the
matrices {Jk} defined in (29), we can write:

tr{CΓ} = tr

{
C(γ0I +

N−1∑
k=1

J∗kγk +

N−1∑
k=1

Jkγ
∗
k)

}

= γ0tr{C}+
N−1∑
k=1

tr{CJ∗k}γk +

N−1∑
k=1

tr{CJk}γ∗k .

(37)

Inserting (37) in (36) and observing that tr{CJ∗k} = trk{C},
lead to the following expression for the Lagrangian:

L(x,γ,Z) =(1− z)x+ γ0(Nρ− tr{C})

− 2

N−1∑
k=1

Re{trk{C}γ∗k}+ 2Re{b∗y}
(38)

The infimum of this function w.r.t. the (unconstrained) x
and γ is given by:

inf
x,γ

L(x,γ,Z) = 2Re{b∗y} (39)

if 
z = 1

tr{C} = ρN

trk{C} = 0

. (40)

Else the infimum is −∞. This observation concludes the
proof of the fact that the GL-SPICE dual problem is given
by (27).

REFERENCES

[1] P. Stoica and R. Moses, Spectral Analysis of Signals,
Prentice Hall, 2005.

[2] I.F. Gorodnitsky and B.D. Rao, “Sparse signal re-
construction from limited data using FOCUSS: A re-
weighted minimum norm algorithm,” IEEE Trans. Sig-
nal Processing, vol. 45, no. 3, pp. 600–616, 1997.

[3] J-J. Fuchs, “On the application of the global matched
filter to DOA estimation with uniform circular arrays,”
IEEE Trans. Signal Processing, vol. 49, no. 4, pp. 702–
709, 2001.

[4] P. Stoica and P. Babu, “SPICE and LIKES: Two
hyperparameter-free methods for sparse-parameter es-
timation,” Signal Processing, vol. 92, no. 7, pp. 1580–
1590, 2012.

[5] T. Yardibi, J. Li, P. Stoica, M. Xue, and A.B. Bag-
geroer, “Source localization and sensing: A nonpara-
metric iterative adaptive approach based on weighted
least squares,” IEEE Trans. Aerospace and Electronic
Systems, vol. 46, no. 1, pp. 425–443, 2010.

[6] P. Stoica, D. Zachariah, and J. Li, “Weighted SPICE: A
unifying approach for hyperparameter-free sparse esti-
mation,” Submitted.

[7] G Tang, B.N. Bhaskar, P. Shah, and B. Recht, “Com-
pressed sensing off the grid,” arxiv.org/abs/1207.6053.

[8] Z. Yang and L. Xie, “On gridless sparse methods for
line spectral estimation from complete and incomplete
data,” Submitted.

[9] A. Panahi and M. Viberg, “Gridless compressive sens-
ing,” Submitted.

[10] E. Kreindler and A. Jameson, “Conditions for nonneg-
ativeness of partitioned matrices,” IEEE Trans. Auto-
matic Control, vol. 17, no. 1, pp. 147–148, 1972.

[11] B. Ottersten, P. Stoica, and R. Roy, “Covariance match-
ing estimation techniques for array signal processing
applications,” Digital Signal Processing, vol. 8, no. 3,
pp. 185–210, 1998.

[12] B. Dumitrescu, I. Tabus, and P. Stoica, “On the parame-
terization of positive real sequences and MA parameter
estimation,” IEEE Trans. Signal Processing, vol. 49,
no. 11, pp. 2630–2639, 2001.

[13] S.P. Boyd and L. Vandenberghe, Convex optimization,
Cambridge University Press, 2004.


