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ABSTRACT

This article introduces a state-space model for the dynamic

modeling of curve sequences within the framework of railway

switches online monitoring. In this context, each curve has

the peculiarity of being subject to multiple changes in regime.

The proposed model consists of a specific latent variable re-

gression model whose coefficients are supposed to evolve dy-

namically in the course of time. Its parameters are recur-

sively estimated across a sequence of curves through an on-

line Expectation-Maximization (EM) algorithm. The experi-

mental study conducted on two real power consumption curve

sequences from the French high speed network has shown en-

couraging results.

Index Terms— Time series of functional data, state-space

model, Kalman filtering, online Expectation-Maximization

(EM) algorithm, condition monitoring

1. INTRODUCTION

Condition monitoring has become a powerful decision-

making support for the preventive maintenance of railway

infrastructure and rolling stock. It consists in assessing their

operating state using condition measurements usually ac-

quired through embedded sensors. In many cases, the ac-

quired data take the form of a sequence of curves, which,

in a statistical framework, is also referred to as a series of

functional data. In the case of the French high speed lines

switch mechanisms, which are considered in this article, each

curve represents the electrical power consumption during a

switch operation and is possibly made of several regimes.

For assessing the operating state of this system, the classi-

cal pattern recognition approach consists in the following two

steps: the extraction of a set of relevant patterns from each

curve using a segmental regression model, and the supervised

classification of the extracted patterns into known operating

states or classes [1]. Another approach, which directly per-

forms the classification on the raw curves, has been adopted

in [2]. It relies on modeling each class of curves using the
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previously evoked segmental regression model and on clas-

sifying the curves using the Bayes discrimination rule. An

extension of this method, which deals with complex shaped

classes potentially made of sub-classes, has recently been de-

veloped [3]. These (static) approaches require the operating

states to be preliminary characterized, which is usually done

by using a labeled collection of curves. For each curve of

this learning database, the operating state must have been pre-

identified by an expert. Nevertheless, the collected curves

are often unlabelled and besides, the operating states are not

all known in advance. One could refer to curve clustering

approaches to automatically identify groups of switch opera-

tions that show similar dynamic behavior [4]. However, these

offline clustering approaches are not designed to analyze a

series of curves.

This article proposes a new approach for online monitor-

ing of the railway switch mechanism. For this purpose, a seg-

mental dynamic regression model is introduced in this paper,

whose parameters are recursively estimated across a sequence

of curves. The proposed model can be formulated as a specific

state-space model [5] [6]. From the estimated parameters,

some real valued indicators can be extracted and analyzed in

the course of time in order to help in monitoring the system.

The paper is organized as follows. Section 2 describes the

curve sequences used in our application and section 3 briefly

recalls the specific regression model used for the static model-

ing of our curves. Then, section 4 presents the dynamic model

and its recursive parameter estimation technique. In section

4, the proposed methodology is applied on sequences of elec-

trical power consumption curves from successive switch op-

erations on the French railway network.

2. POWER CONSUMPTION CURVES SEQUENCES

ACQUIRED FROM SWITCH OPERATIONS

As mentioned in the introduction, the main motivation behind

this study was the monitoring of the railways switches that

allow trains to change tracks at junctions. A switch operation

consists in moving laterally some linked tapering rails (also

known as points) into one of two positions. In the case of the



French high speed lines, this operation is generally operated

by an electrical motor (380V alternative current).

The monitoring task is performed by temporally ana-

lyzing sequences of electrical power consumption curves

recorded during switching operations. Each curve is sampled

at 100 Hz (100 points are recorded per second) and observed

over 5 seconds (m = 500 points per curve). Figure 1 shows

a sequence of 50 power consumption curves acquired during

successive switch operations.
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Fig. 1. Example of a sequence of 50 power consumption

curves acquired during successive switch operations.

The specificity of the curves to be analyzed in this context

is that they are subject to various changes in regime as a re-

sult of five successive mechanical movements of the physical

components associated with the switch mechanism:

• the starting phase: period between the activation of the

motor and the starting of the switch operation itself,

• the points unlocking: phase where the switch points are

unlocked, that makes them ready for the translation,

• the points translation: phase corresponding to the transla-

tion of the points,

• the points locking: phase where the switch points are

locked;

• the friction phase: phase where an additional effort is ap-

plied to ensure the locking.

3. STATIC REGRESSIVE REPRESENTATION OF

CURVES WITH CHANGES IN REGIME

Let xt denote a power consumption curve, where

xt = (xt1, . . . , xtn) consists of n real values observed over a

time grid indexed by the integers (1, . . . , n). Before introduc-

ing the model proposed in this study, let us recall the so-called

“Regression model with Hidden Logistic Process” (RHLP)

that was used for the modeling and discrimination of curves

subject to changes in regime [1]. According to this model,

each individual observations xtj of a curve xt follows one of

K regression models associated to the regimes involved in

the curve generation process:

xtj = U′
j βztj

+ σztj εtj , (1)

where ǫtj ∼ N (0, 1) is a random Gaussian noise and

ztj ∈ {1, . . . ,K}. For each k ∈ {1, . . . ,K}, the param-

eters σk ∈ R and βk ∈ R
q+1 are respectively the noise

standard deviation and the coefficient vector of the kth re-

gression model of degree q. The transpose vector U′
j de-

notes the vector of regressors (1, j, j2, . . . , jq) associated

to βk. The assignment of the xtj to the different regres-

sion models is specified by the random process denoted by

zt = (zt1, . . . , ztj, . . . , ztn). For the process zt to define a

segmentation into contiguous segments, the variable ztj is

supposed to be randomly drawn according to the multino-

mial distribution M(1;π1(j,α), . . . , πK(j,α)), where the

probabilities πk(j,α) are defined as the following logistic

functions [1] [2] [4]:

πk(j,α) = p(ztj = k) =
exp(αk1j + αk0)∑K

ℓ=1 exp(αℓ1j + αℓ0)
, (2)

with α = (αk0, αk1, k = 1, . . . ,K) ∈ R2K . It should be no-

ticed that the logistic functions πk(j,α) verify

0 < πk(j;α) < 1 and
∑K

k=1 πk(j;α) = 1. It can be shown

that the equations defined below can be encompassed into a

single mixture of Gaussian probability density functions of

xti defined by:

p(xtj ; θ) =

K∑

k=1

πk(j;α)N (xtj ;U
′
jβk, σ

2
k), (3)

where θ = (α,β1, . . . ,βK , σ2
1 , . . . , σ

2
K) is the global param-

eter vector of the model.

The parameters of this model can be estimated from a

single curve or from several curves sharing the same charac-

teristics, by maximizing the likelihood function through the

Expectation-Maximization (EM) algorithm [7] [1]. From a

practical point of view, the parameters estimated from power

consumption curves can be used as feature vectors to discrim-

inate between normal operating states and defects [1]. Figure

2 shows the polynomials estimated from a power consump-

tion curve and its associated logistic probabilities.

4. A STATE-SPACE MODEL FOR CURVES

SEQUENCES MODELING

The model introduced in this section extends the one de-

scribed previously, to deal with a time series of power con-

sumption curves. We are interested in modeling the temporal

evolution of a curve sequence. Based on this dynamical rep-

resentation, outliers and changes of behavior in the sequence

of operations will be clearly detectable. Let (x1, . . . ,xT )
denote a sequence of T power consumption curves observed

over the same time grid, where xt = (xt1, . . . , xtn).
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Fig. 2. Regression model estimated from a power consump-

tion curve, with K = 5 and q = 3 (top) and corresponding

logistic probabilities (bottom)

4.1. Model definition

The model that we propose for a sequence of curves is the

dynamic extension of the model previously described. It is

defined by the pair of equations

xtj = U′
j βt,ztj

+ σztjεtj (4)

βtk = βt−1,k + v ηtk (5)

where ηt ∼ N (0, I) is a Gaussian noise in Rq+1, I be-

ing the identity matrix in Rq+1. In this dynamic model,

the regression coefficient vector sequence (βtk)t=1,...,T , for

each segment k, is modeled as a Gaussian random walk,

the variance v2 ensuring a trade-off between model fit and

time variation. As for the static model, we suppose that

the components ztj(j = 1, . . . , n) of the random process

zt = (zt1, . . . , ztn) are independently generated from the

multinomial law M(1;π1(j,α), . . . , πK(j,α)). The param-

eter vector of this dynamic model can therefore be denoted

as Φ = (α, v2, (β0k), (σ
2
k)), the variables βtk and ztj , for

t ≥ 1, being considered as latent variables.

It can be shown that, conditionally onβt = (βtk)k=1,...,K ,

the variable xtj is distributed according to a Gaussian mixture

density and that, conditionally on βt−1,k, the variable βtk is

distributed according to a Gaussian density. These densities

are defined as follows:

p(xtj |βtk;Φ) =
K∑

k=1

πk(j;α)N (xtj ;U
′
j βtk, σ

2
k) (6)

p(βtk|βt−1,k;Φ) = N (βtk;βt−1,k, v
2I). (7)

4.2. Recursive EM algorithm

Let x = (x1, . . . ,xT ) denote the sequence of observed

curves, β = (β1, . . . ,βT ) the latent regression coefficients

and z = (z1, . . . , zT ) the latent segments.

In case the complete curve sequence x is available before

the analysis, the usual way to estimate the dynamic model

parameters consists in maximizing the log-likelihood crite-

rion log p(x;Φ) via the Expectation-Maximization (EM) al-

gorithm [7] [8]. Given the maximum likelihood estimate Φ̂

of Φ, the latent variables can be estimated by their posterior

expectation E(β|x; Φ̂) and E(z|x; Φ̂). Unfortunately, the E-

step of this algorithm is intractable because it requires succes-

sive integrations whose number grows exponentially with T .

To get an exact inference learning algorithm, we suggest, in-

stead of maximizing the classical log-likelihood, to maximize

the criterion

L(Φ) = max
β

log p(x,β;Φ), (8)

which is equivalent to maximize the criterion

L(β,Φ) = log p(x,β;Φ), (9)

with respect to (β,Φ). A specific EM algorithm can be de-

rived to solve this optimization problem.

However, for our purposes, the estimation must be per-

formed concurrently with data acquisition. In this case, a re-

cursive version of the EM algorithm is used to estimate both

the parameters and latent regression coefficients. Given start-

ing values (β0,Φ
(0)), it consists, while new curves xt+1 are

forthcoming, in computing the new estimates (βt+1,Φ
(t+1)),

by maximizing the auxiliary criterion defined by:

Qt+1(βt+1,Φ) = Qt(βt,Φ) +
∑

j,k

τt+1,j,k log πk N (xt+1,j ;U
′
jβtk)

+
K∑

k=1

logN (βt+1,k;βtk, v
2), (10)

where Q0 = 0 and τt+1,j,k is the posterior probability defined

by equation (11). The resulting recursive EM algorithm is

then defined by the following steps.

Initialization

• Compute the initial logistic probabilities coefficient α(0),

regression coefficients (β0k) and variances
(
σ2(0)

k

)
by

identifying the “static model” described by equations (1)

and (3) on the five first curves, and set v2
(0)

= 1.

• Set t = 0.

E-Step (Expectation)

For each new curve xt+1, compute for j = 1 . . . , n and for

k = 1, . . . ,K , the posterior probability that xt+1,j originates

from the kth regression model, given the previous parameters

and regression coefficients:

τt+1,j,k =
πk(j;α

(t))N (xt+1,j ;U
′
jβtk, σ

2(t)

k )
∑K

ℓ=1 πℓ(j;α(t))N (xt+1,j ;U′
jβtℓ, σ

2(t)
ℓ )

(11)



M-Step (Maximization)

• Update the regression coefficients using Kalman filtering

recursions:

βt+1,k =βtk +

=Kt+1,k

n∑

j=1

τt+1,j,k Uj

(
xt+1,j −U′

jβtk

)
(12)

where the Kalman gain Kt+1,k is defined by

Kt+1,k =
[( n∑

j=1

τt+1,j,k UjU
′
j

)
+
(
σ2(t)

k /v2
(t))

I
]−1

.

• Update the variances:

v2
(t+1)

= St+1/(t+ 1) (13)

σ2(t+1)

k = St+1,k/Rt+1,k, (14)

with

St+1 = St +
∑

k

∥∥βt+1,k − βtk

∥∥2

St+1,k = Stk +
∑

j

τt+1,j,k

(
xt+1,j −U′

jβt+1,k

)2

Rt+1,k =Rtk +
∑

j

τt+1,j,k ,

where S0 = S0,k = R0,k = 0.

• Update the logistic regression coefficients:

α(t+1) = α(t) − [H(α(t))]−1 g(α(t)), (15)

where g(α(t)) and H(α(t)) are respectively the vector

and the matrix defined by:

g(α(t)) =
(
gk(α

(t))
)
1≤k≤K−1

H(α(t)) =
(
Hkℓ(α

(t))
)
1≤k,ℓ≤K−1

with

gk(α
(t)) =

∑

j

(
τt+1,j,k − πk(j;α

(t))
)
,

Hkℓ(α
(t)) = −(t+ 1)×

∑

j

πk(j;α
(t))

(
δkℓ − πℓ(j;α

(t))
)

where δkℓ = 1 if k = ℓ and 0 otherwise.

• Set t = t+ 1.

5. APPLICATION TO THE MONITORING OF

SWITCH OPERATIONS

Given a curve sequence, a mixture of K = 5 polynomials

of order p = 3 are recursively estimated according to the al-

gorithm described in the previous section. Concurrently with

parameters estimation, a single indicator defined by

µk(t) =

∑n

j=1 πk(j;α
(t))U′

jβtk∑n

j=1 πk(j;α(t))
(16)

is extracted from each phase k ∈ {1, . . . , 5}, at each time

t. This numerical indicator can be interpreted as the average

value of the kth polynomial curve over the kth segment.

Our descriptive condition monitoring approach then con-

sists in visualizing and analyzing the five series of indicators

(µ1(t))t, . . . , (µ5(t))t. These indicators charts extracted

from the estimated parameters provide a descriptive tool

for visualizing more easily the dynamic behind the curves

regimes. Based on this representation, atypical curves (out-

liers) and changes in the behavior of the curve sequence can

be clearly detectable.

This strategy has been applied on two curve sequences

(see figure 3) recorded from two different point machines.

Their characteristics are the following:

• curve sequence A:

– time period : from June 01 2011 to July 31 2011,

– length of the curve sequence: T = 872,

– average number of operations per day: 15.

• curve sequence B:

– time period : from June 01 2011 to July 31 2011,

– length of the curve sequence: T = 1817,

– average number of operations per day: 30.
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Fig. 3. Curve sequences A (top-left) and B (bottom-left) and

their estimation (top-right and bottom-right); each estimated

curve is the sum of estimated polynomial regression curves

weighted by the logistic probabilities.

Figure 4 shows the series of indicators corresponding to

the unlocking (µ2(t)), translation (µ3(t)) and locking µ4(t)
phases. The series corresponding to the starting (µ1(t)) and

the friction (µ5(t)) phases, which vary only slightly, are not

displayed. For the curve sequence A, a slow degradation is



revealed during the translation phase, which can be attributed

to a lubrication defect. This point is illustrated by the figure

5(a), which clearly shows the increasing power consumption

during the translation phase. For curve sequence B, a one-

time anomaly (outlier B1) is observed during the unlocking

phase. The three charts also reveal a slight global change

(change point B2) in the behavior of the switch operations.

To illustrate the observations made from the time series of in-

dicators, figure 5(b) shows the atypical curve together with

normal curves, and figure 5(c) displays 50 curves before the

change point B2 and 50 curves after this one.
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Fig. 4. Temporal evolution of indicators µk(t) associated to

the unlocking, translation and locking phases of a switch op-

eration, obtained for curve sequences A (left) and B (right).
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Fig. 5. Curves illustrating the singular points identified from

the temporal analysis of the indicators µk(t) (see figure 4).

6. CONCLUSION

A dynamic probabilistic modeling of curve sequences, dedi-

cated to the online monitoring of railway switch operations,

has been introduced in this paper. It involves modeling the

curves using conjointly several regression models whose tem-

poral evolution is tracked across a sequence of curves. The

model parameters are identified online using a recursive vari-

ant of the Expectation-Maximization algorithm whose M-step

involves Kalman filtering recursions.

The experimental study conducted on two curve se-

quences acquired from switch operations on the French high

speed network has shown encouraging results in terms of

characterization of the temporal evolution of curves. The

indicators charts extracted from the estimated parameters

provides a descriptive tool for visualizing more easily the

dynamic behind the curves regimes that can be augmented

by detection thresholds tuned adequately according to pre-

ventive maintenance strategies. As the curve sequences to be

studied change dynamically with time, suitable comparison

methods were not available. One of the prospects of this work

will be to numerically evaluate the proposed approach using

simulated curves with known regression coefficients.

The proposed approach is sufficiently generic to be ap-

plied on other curve sequences. In this case, the problem of

assessing the optimal number of segments and polynomial or-

der could be addressed by using classical model selection cri-

teria such as the Bayesian Information (BIC) criterion [9].
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