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ABSTRACT

We assess the performance of Gaussianity tests, namely

the Anscombe-Glynn, Lilliefors, Cramér-von Mises, and

Giannakis-Tsatsanis (G-T), with the purpose of detecting

narrowband and wideband interference in GNSS signals.

Simulations have shown that the G-T test outperforms the

others being suitable as a benchmark for comparison with

different types of interference detection algorithms.

Index Terms— Gaussianity tests, interference detection,

kurtosis, cumulants

1. INTRODUCTION

Current Global Navigation Satellite Systems (GNSS) use

spread-spectrum modulation schemes to carry navigation

information but the transmitted signals present often poor

robustness to certain types of RFI (radio frequency interfer-

ence) which can be intentionally provoked (jamming) or due

to the proximity of authorized radio sources, such as TV/FM,

radar and mobile systems. These interfering systems tend to

exhibit narrow bands compared with the GNSS signal band-

widths, whereas jammers typically use wideband signals for

malicious interference [1]. Thus, we will consider two types

of interfering signals: narrowband sinusoidal and wideband

FM-modulated chirp signals.

In [2], a method for pre-correlation interference detection

in GNSS signals was proposed. It was considered a semi-

blind interference detection scheme as it compares the char-

acteristics of the signal disturbed by RFI with an interference-

free signal. Although being more sensitive to weak interfer-

ence than the absolute detection schemes, it requires that the

GNSS signal is sampled at a window (assessment window)

where it is known that the signal is RFI-free (see also [3]).

However, (i) often this assumption cannot be guaranteed or

(ii) the interference detection algorithm has to operate in a

scenario where RFI is already present. In those cases, it would

be convenient to use blind detection schemes that perform

reasonably well without data from an assessment window.

This consideration is the starting point for the present work.

Typical sampled complex baseband received signals con-

tain data from several satellites and constellations together

with uncorrelated Gaussian samples due to thermal noise. As

a consequence, the inphase/quadrature components are ap-

proximately zero-mean Gaussian provided that the number of

RF signals impinging the receiver’s antenna at a given band

is larger than about five. For a large number of RF signals

Gaussianity is guaranteed by the Central Limit theorem [4].

In practical scenarios this condition is met most of the time;

that is, with the deployment of several GNSSs besides GPS,

the number of satellites in view is almost always larger than

five [5].

The tests of Gaussianity (or normality) have been used in

many different applications to separate (classify) two popula-

tions that obey to different statistical distributions when it is

known that one of them is Gaussian [6]. There are a plethora

of tests available which are usually based on the evaluation of

the distribution moments such as the kurtosis and the skew-

ness (e.g., Anscombe-Glynn and Jarque-Bera tests), or the

maximum distance between two points of the experimental

and reference curves of the distribution (e.g., Kolmogorov-

Smirnov and Lilliefors tests), or the average distance between

experimental and reference curves (Cramér-von Mises test).

In [7], Giannakis and Tsatsanis proposed a test for Gaussian-

ity that relies on higher-order statistics. Specifically, the al-

gorithm resorts to third or fourth-order cumulants to measure

deviations from Gaussianity and uses the fact that, if a se-

quence of real samples are Gaussian, then the k.th-order cu-

mulants vanish for k ≥ 3. Although computationally heavier,

the 4th-order cumulants are preferable as the 3rd-order cumu-

lants (as well as any odd order above the first [8]) are zero for

any symmetrical distribution and in most cases will fail to de-

tect departure from Gaussianity. Therefore, we will consider

herein only 4th-order cumulants.

This paper aims at analyzing and comparing the perfor-

mance of normality tests in the detection of RFI in GNSS

receivers. The tests to be considered are the Anscombe-

Glynn [9], Lilliefors [10], Cramér-von Mises [11], and

Giannakis-Tsatsanis [7]. The comparison will be carried out

mainly through the receiver operating characteristic (ROC)

plots which are curves of correct interference detection prob-

ability versus false alarm probability for a pre-defined sce-

nario.

2. SIGNAL CHARACTERIZATION

Assume that the incoming signal disturbed by interference

(jamming signal) s(t) is [5]

r(t) =

Ng∑

g=1

Agcg(t)dg(t) cos(2π(f0+fg)t+φg)+s(t)+w(t)

(1)



where Ng is the number of received GNSS signals and w(t)
is AWGN with power spectral density Gw(f) = N0/2. For

each received signal, with amplitude Ag , the carrier-to-noise

ratio is (C/N0)g = A2
g/(2N0), cg(t) is the spreading se-

quence, dg(t) is the data sequence, f0 and fg are, respec-

tively, the nominal carrier and Doppler frequencies, and φg is

the initial carrier phase. We consider two types of continuous

interferers: a sinusoidal waveform of frequency f0+ fJ , with

fJ accounting for the jammer’s frequency offset, and a chirp

waveform, both described by s(t) = AJ cos(ϕ(t)), where AJ

stands for the interference amplitude. The jamming-to-signal

power ratios are (J/C)g = A2
J/A

2
g .

The sinusoidal (narrowband) interference is defined as

s(t) = AJ cos[2π(f0 + fJ)t + ϕ0], with ϕ0 denoting the

initial phase. Signal r(t) is heterodyned to baseband and

sampled at rate r = ∆−1 to yield

zm = sm +AJ exp[j(2πfJ tm + ϕ0)] +Nm (2)

with tm = m∆ and Nm = Ni,m + jNq,m. The noise com-

ponents Ni,m and Nq,m are independent Gaussian zero-mean

random variables (r.v.) with variance N0/∆. Signal

sm =

Ng∑

g=1

Agcg,mdg,m exp[j(2πfgtm + φg)] (3)

is the contribution of the visible satellites. The pdfs of

Agcg,mdg,m cos(2πfgtm+φg) andAgcg,mdg,m sin(2πfgtm+

φg) are given by fY (y) = 1/
(
π
√
A2

g − y2
)

, for |y| < Ag ,

with variance A2
g/2.

For Ng ≥ 5 independent GNSS signals with equal am-

plitudes Ag = A, g = 1, . . . , Ng, the real and imaginary

parts of sm are well approximated by zero-mean Gaussian r.v.

with variancesA2Ng/2, thanks to the Central Limit Theorem.

Therefore, in the absence of an interfering signal and assum-

ing that several satellites are in view, we can consider that

the real and imaginary parts of the samples zm are indepen-

dent and approximately zero-mean Gaussian with variances

greater than N0/∆.

In [1] several civil jammers were tested and the signals

found were, typically, of the chirp type with periods of rep-

etition in the order of several dozens of microseconds and

frequency sweeps exceeding 20 MHz. Based on the analy-

sis carried out in [1] we model the wideband interference as

a periodic chirp signal with the frequency sweep depicted in

Fig. 1, where L stands for the frequency sweep range, and TJ

is the period of the jamming signal.

The instantaneous frequency is given by fi(t) = f0+γt−
L/2 in the interval 0 ≤ t ≤ TJ , with γ = L/TJ . Let τ =
mod(t, TJ) be the remaining after division of t by TJ ; the

interfering signal is given by s(t) = AJ cos[2π(f0−L/2)τ+
πγτ2 + ϕ0].

Signal r(t) with chirp interference is heterodyned to base-

band and sampled at rate r to yield

zm = sm +AJ exp[j(πγτ2m − πLτm + ϕ0)] +Nm (4)

T

t

J

L
f0

f

Fig. 1. Frequency sweep of the chirp jamming signal.

with τm = mod(tm, TJ). The signals amplitudes are

given by Ag =
√
2N0(C/N0)g = σN

√
2∆(C/N0)g and

AJ = Ag

√
(J/C)g = σN

√
2∆(C/N0)g(J/C)g . We con-

sider sampling rates such that A2
g/2 ≪ σ2

N .

3. GAUSSIANITY TESTS

In this section several Gaussianity tests will be described. In

all cases hypothesis H0 corresponds to complex Gaussian

observations zm and hypothesis H1 corresponds to non-

Gaussian observations. The former is considered to charac-

terize a GNSS signal without interference and the latter is

assigned to a signal affected by interference.

A. Anscombe-Glynn test. A normally distributed station-

ary sequence x(i), i = 1, . . . , N or its random variable X ∼
N (µ, σ2) may be characterized by its k-order central mo-

ments, which are zero, if k is odd, and 1×3×. . . (k−1)σk, if k
is even [4]. Of particular interest are the third and fourth stan-

dardized moments given by [6]
√
b1 = E{(X−µ)3}/σ3 and

b2 = E{(X − µ)4}/σ4 that measure skewness and kurtosis,

respectively. For the Gaussian distribution they are given by√
b1 = 0 and b2 = 3. The non-normality of a given sequence

can be measured by the deviation of the skewness and kurto-

sis from the values taken by the Gaussian distribution. How-

ever, the skewness is not useful if the non-normal distribution

remains symmetric. Therefore, for certain types of signals,

such as those described by (2) and (4), one relies essentially

on the kurtosis estimation. Two-sided tests (for b2 6= 3) or

one-sided tests (for b2 > 3 or b2 < 3) can be envisaged. Con-

sider the natural estimator of b2, namely b̂2 = m4/m
2
2, where

mk =
∑

(x(i) − µ̂)k/N . Asymptotically, as N → ∞, b̂2
is normally distributed with mean E(̂b2) → 3 and variance

var(̂b2) → 24/N [9]. Let the standardized version of b̂2 be

x = (̂b2 − E(̂b2))/

√
var(̂b2). The third moment of x is

√
β(̂b2) =

6(N2 − 5N + 2)

(N + 7)(N + 9)

√
6(N + 3)(N + 5)

N(N − 2)(N − 3)
(5)



For N above about 30, x has approximately a chi-square dis-

tribution with

A = 6 +
8√
β(̂b2)


 2√

β(̂b2)
+

√
1 +

4

β(̂b2)


 (6)

degrees of freedom (such that A > 18). Since A is never

small we can convert the chi-squared distribution to an equiv-

alent normal distribution by the Wilson-Hilferty transforma-

tion. The Gaussian random variable corresponding to x is [9]

Z (̂b2)=

√
9A

2



(
1− 2

9A

)
−
(

1− (2/A)

1 + x
√
2/(A− 4)

) 1

3




(7)

with Z (̂b2) being approximately normally distributed under

the hypothesis that the sequence x(i) is Gaussian (hypothe-

sis H0). The decision threshold λ can be computed by λ =

Q−1(Pfa/2), where Pfa = Pr(|Z (̂b2)| > λ|H0) denotes the

probability of false alarm and the error function Q(·) is

Q(y) =
1√
2π

∫
∞

y

exp(−u2/2) du (8)

B. Lilliefors test. The Kolmogorov-Smirnov (K-S) test of

goodness of fit provides a meaning of testing whether a set of

samples belong to a completely specified continuous distri-

bution. However, when certain parameters of the distribution

are not known and have to be estimated from the samples,

then the K-S test cannot be applied without modification. The

Lilliefors test for normality is one of the most well-known

modifications of the K-S test.

The procedure is as follows [10]: given a set of N samples

one determines D = max|F (X) − SN (X)|, where SN (X)
is the sample cumulative distribution function and F (X) is

the cumulative normal distribution function with mean equal

to the sample mean and variance equal to the sample vari-

ance. If D exceeds a critical tabulated value, one rejects the

hypothesis that the observations are from a normal distribu-

tion. The tabulated critical values were obtained by Monte

Carlo calculation. For N > 30 the ratio of the Monte Carlo

values to the standard values remains relatively constant. In

that case, the resulting critical values of D for different levels

of significance are equal to γ/
√
N , with γ given in [10].

Any value of D which is greater than or equal to the tabu-

lated value is significant at the indicated level of significance.

If D exceeds the critical value given by the table, the normal-

ity hypothesis is rejected with probability of false alarm equal

to the level of significance.

C. Cramér-von Mises test. Consider the sequence x(i),
i = 1, . . . , N , of independent identically distributed random

variables with corresponding sample distribution function

FN (x), x ∈ R. The Cramér-von Mises statistic for testing

whether the random variables have distribution functionF (x)
(hypothesis H0), where F (x) is assumed to be a continuous

function on R, is [11]

ω2
N = N

∫
∞

−∞

[FN (x)− F (x)]2 dF (x) (9)

Consider now that F (x) is the distribution function of a

Gaussian r.v. with mean µ and variance σ2. If U1 ≤ . . . ≤
UN , with Ui = F (x(i)) = 1−Q((x(i)− µ)/σ), then

1

12N
≤ ω2

N =
1

12N
+

N∑

i=1

(
Ui −

2i− 1

2N

)2

≤ N

3
(10)

for N = 1, 2, . . . The hypothesis H0 is rejected whenever

ω2
N ≥ λ, where λ is such that Pr{ω2

N ≥ λ} = α (probability

of false alarm). For N → ∞, reference [12] exhibits a table

of the probabilitiesPr(ω2
N > λ) versus the decision threshold

λ.

D. Giannakis-Tsatsanis test. Consider the zero-mean,

real, stationary, Gaussian sequence x(i), i = 1, . . . , N , with

variance σ2
x. The components of the 4.th-order autocumulant

vector are defined by [7]

c4(a, b, c) ≡ E{x(i)x(i + a)x(i + b)x(i + c)}
− c2(a)c2(b− c)− c2(b)c2(c− b)− c2(c− a) (11)

for a ≥ b ≥ c ≥ 0, where c2(a) ≡ E{x(i)x(i + a)} is the

autocorrelation function. In particular, we have c4(0, 0, 0) =
E{x4(i)} − 3(E{x2(i)})2 usually denoted as κ4 [8].

The classical or natural estimator of the autocumulant

c4(a, b, c) is

ĉ4(a, b, c) =
1

N

N∑

i=1

x(i)x(i + a)x(i + b)x(i + c)

− ĉ2(a)ĉ2(b − c)− ĉ2(b)ĉ2(a− c) (12)

− ĉ2(c)ĉ2(a− b)

where ĉ2(a) is the estimate of the autocorrelation given by

ĉ2(a) =
1

N

N−a∑

i=1

x(i)x(i + a) (13)

The Gaussianity test uses Nc = L(L + 1)(L + 2)/6 lags

(a, b, c), with 0 ≤ c ≤ b ≤ a ≤ (L − 1), and L = 1, 2, . . .,
which are collected into an Nc × 1 vector, called ĉ4 for

simplicity. Assume lexicographic sorting where the element

ĉ4(p), with p = 1, 2, . . . , Nc, is given by ĉ4(p) = ĉ(a, b, c)
such that p = (1/6)(a3 + 3a2 + 2a+ 6) + (1/2)(b+ 1) + c.

The Gaussianity test is formulated as the following binary

hypothesis testing problem: H0 : ĉ4 ∼ N (0, N−1Q̂) versus

H1 : ĉ4 ∼ N (c4, N
−1Q̂), with c4 6= 0. Matrix Q̂ is an

estimate of the asymptotic covariance matrix of c4, which is

Q = limN→∞ NE{(ĉ4 − c4)(ĉ4 − c4)
T }. The test, defined

as [7]

t4 = ĉT4 Q̂
−1ĉ4 (14)



is asymptotically (when N → ∞) chi-square distributed with

Nc degrees of freedom, mean Nc and variance 2Nc. Given

the decision threshold λ, the probability of false alarm is [13]

Pfa = Pr{t4 ≥ λ|H0}

= exp

(
−λ

2

) (Nc/2)−1∑

k=0

1

k!

(
λ

2

)k

(15)

A major difficulty with the computation of t4 is the deter-

mination of Q̂. For N ≫ 1, this matrix is almost diagonal

with the entries off the main diagonal much smaller in modu-

lus than those of the diagonal. Therefore, we can approximate

Q̂ by a truly diagonal matrix, i.e., Q̂ ≈ diag{d1, . . . , dNc
},

with dp = E{ĉ24(p)}, where ĉ4(p) is obtained using (12).

It can be shown that the elements ĉ4(a, b, c) of the cu-

mulant vector ĉ4 take no more than five different values, re-

gardless of N and Nc. We name them as types I through V

according to the following table.

type (a, b, c)

I (0, 0, 0)
II (a, 0, 0) or (a, a, a), a > 0
III (a, a, 0), a > 0
IV (a, a, b), (a, b, b), (a, b, 0), a, b > 0
V (a, b, c), a > b > c > 0

The value d1 was determined, for instance, in [14], and

is given by d1 = 12(2N2 − 3N + 36)σ8
x/N

3. For N ≫ 1,

which is the case considered in this paper, the dependency is

d1 = dI ≈ (24/N)σ8
x. By the same token, we have for the

remaining four types of cumulant elements: dII ≈ (6/N)σ8
x,

dIII ≈ (4/N)σ8
x, dIV ≈ (2/N)σ8

x, and dV ≈ (1/N)σ8
x.

4. SIMULATION RESULTS

For all the simulations we consider a sinusoidal interference

with frequency equal to 100 kHz or a chirp interference with

frequency range L = 40 MHz, centered at the GNSS signal

carrier frequency, with repetition period TJ = 20µs. The

sampling rate is r = 50 MHz.

Fig. 2 exhibits the receiver operating characteristic (ROC)

for each of the four Gaussianity tests under discussion. The

curves depict the pairs (Pfa(λ), Pd(λ)), where Pfa(λ) stands

for the probability of false alarm for the decision threshold λ,

with hypothesis H0 and Pd(λ) denotes the probability of cor-

rect detection with hypothesis H1. The number of complex

observations is Ns = 104, which are organized as 2Ns real

samples (real part of each observation followed by imaginary

part), and the curves were computed with 5 × 104 indepen-

dent runs. In the simulations we considered that Ng = 10
independent GNSS signals with equal signal-to-carrier ratios

(C/N0 = 50 dB-Hz) were received.

The results show identical performances of each test

for the sinusoidal and chirp interference, except for the

Giannakis-Tsatsanis (G-T) test, where performance achieved

with the sinusoidal interference is much better than the one

obtained with the chirp interference for Nc = 4 lags. How-

ever, this discrepancy is attenuated by increasing Nc.
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Fig. 2. ROC curves for Anscombe-Glynn, Lilliefors, Cramér-

von Mises and Giannakis-Tsatsanis tests with sinusoidal and

chirp interference signals.

The G-T test, although more demanding in terms of com-

putational effort (especially for a large number of lags) per-

mits to obtain better results than the other three tests under

study. Simulations have shown that the performance improves

with Nc for both types of interference. This means that by in-

creasing Nc we can improve the ability of the test to separate

hypotheses H0 and H1 for a certain number of observations.

Given the advantages over the remaining tests, we will con-

centrate henceforth on the analysis of the G-T test.

Consider the cost function C(λ) = [P 2
fa(λ) + (1 −

Pd(λ))
2]1/2 given by the distance from the ROC curve to

the upper left corner of the plot. The optimum value of λ
corresponds to minimize C(λ). By computing the values

of Cmin = minλ{C(λ)} we can compare the performance

of two tests for a given interference-to-signal power (J/C),
the best being the one with the smallest ROC metric Cmin.

Alternatively, we can determine the gain of test A relative to

test B ((J/C)A,dB − (J/C)B,dB) for a given value of Cmin.

Figure 3 exhibits the curves of Cmin versus the ratio J/C
for sinusoidal and chirp interference where different values

of lags Nc were considered. In the figure, Cmin ≈ Pfa

√
2 ≈

(1− Pd)
√
2. The solid and the dashed curves were built with

Ns = 104 and Ns = 2 × 104 samples (observations), re-

spectively. Note that there is an improvement of about 1 dB

when the number of observations doubles. The dotted curves

were obtained with the exact value of the Gaussian noise vari-

ance σ2
x for Nc = 35 and Ns = 104 samples (semi-blind

scheme); in contrast, all the other curves result from estimat-

ing the noise variance from the observations (blind schemes).

For all the curves Cmin → 1/
√
2 when J/C → 0, which cor-

responds to the ROC curve with Pd = Pfa. In this case, the

test is unable to separate hypotheses H0 and H1. The curves

with Nc = 1 mean that only cumulant c4(0, 0, 0) was used to

test Gaussianity, which is equivalent to the kurtosis tests, such



as the Anscombe-Glynn.

Simulations carried out have shown that, for practical val-

ues of the GNSS signals carrier-to-noise ratio (C/N0 ≤ 50
dB-Hz), the presence of the signals does not affect signifi-

cantly the results. This means that about the same conclusions

could be achieved if the signals without interference in (2) or

(4) were solely white Gaussian complex sequences Nm.
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Fig. 3. ROC metrics Cmin for the G-T test with sinusoidal

(top) and chirp (bottom) interference.

5. CONCLUSION

This paper aimed at analyzing the performance of several

Gaussianity tests as a blind method to detect narrow (sinu-

soidal) and wideband (chirp) interference in GNSS signals.

The tests under analysis can be classified into two classes: the

ones that resort to the computation of moments or cumulants

(Anscombe-Glynn and Giannakis-Tsatsanis), and those that

rely on the divergence of the empirical distribution function

relative to the theoretical Gaussian distribution (Lilliefors

and Cramér-von Mises). Simulations have shown that the

Giannakis-Tsatsanis test produces the best results at the cost

of a higher computational burden. In general, this test is more

sensitive to narrowband interference, thus meaning that more

processing effort is required to detect chirp interference. The

test can be used as a benchmark for comparison with other

interference detection techniques, such as those based on the

eigenvalues of the sample covariance matrix [15].
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