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ABSTRACT

Biometrics are quantities obtained from analyses of biological
measurements. For human based biometrics, the two main
types are clinical and authentication. This paper presents a
brief comparison betw een the two, showing that on many
occasions clinical biometrics can motivate for its use in
authentication applications. Since several clinical biometrics
deal with temporal data and also involve several dimensions
of movement, we also present a new application of Singular
Spectrum Analysis, in particular its multivariate version, to
obtain significant frequency information across these
dimensions. We use the most significant frequency
component as a biometric to distinguish between various
types of human movements. The signals were collected from
triaxial accelerometers mounted in an object that is handled
by a user. Although this biometric was obtained in a clinical
setting, it shows promise for authentication.

Index terms - Multivariate singular spectrum analysis,
accelerometer, biometrics, instrumented objects, eigenvalues

1. INTRODUCTION

A cursory observation of current consumer gaming
electronics show the ubiquity of spatial  three dimensional
(3D) vision systems that analyse human motion to bring
added interactivity in computer games. Indeed, such human
motion systems are being pressed into service for clinical 
use. The analysis of motion implies a temporal  dimension to
the 3D data. Now biometrics is the measurement and analysis
of biological data and when human data is used, the term is
popularly used for identification of persons. However in this
context the term used should be biometric authentication as
compared to say, clinical  biometrics. From these
considerations, we can say that biometrics are used in these
consumer gaming systems. Together with the widespread
deployment of video cameras for surveillance purposes, we
see that it is easy to obtain temporal 3D biometrics.

Often there is a need to combine and analyze 3D data
originating from a common source like the movement of a
person. In including the dimension of time, frequency based
biometrics may be obtained as well. In this paper we show the
limitations of traditional fixed basis methods of frequency
analysis and show a novel application of a multidimensional
data analysis approach w hich combines the data in a
mathematically principled way and also provides easily
interpretable frequency information which we will use for
detection of a feature in this case, tremor.

We apply this method in a clinical application noting that
the use of clinical biometrics as a precursor to authentication
biometrics has several antecedents for example the use of
DeoxyNucleuic Acid (DNA) chains from medical and now ,
used for identification as well. One of the more recent time
based authentication biometric has been gait which was used

in originally in a clinical setting as discussed in [1]. Further
more we use the standardized patient methodology as a
precursor to full scale medical trials. So as compared to
authentication biometrics, for this paper we do not use large
scale tests or attempt to perform classification but rather 
detect a feature.

In this paragraph we summarize the use of the temporal
dimension in biometrics - in particular gait and for the sake of
space, the primary reference will be [1] where more specific
information can be found. Time varying features of a motion
can be weighted and averaged into an image as in the Motion
History Image methods. Variations of movements in time can
also be summarized in the form of frequencies, or other
nonlinear measures such as the Lyapunov exponent. These
methods average time in an elementary way. In contrast, w e
show how common frequency information across 3D data
streams can be obtained using a Singular Value
Decomposition type of analysis which is has a better
mathematical basis.

Often the signals produced by human movements are
processed in the frequency domain. This is true of most
current methods of analysing biomedical signals which  use
standard time or frequency measurements. However
biological signals are never so well behaved, leading to the
search for newer types of analyses which we feature in this
paper.

In Section 2 we outline the motivation for our approach
and cover background material. Section 3 describes our
experimental setup. The theory we use for our signal analyses
is covered in Section 4. Then we report the results of our
experiments in Section 5 before we conclude in Section 6.

2. ASSESSING LIMB FUNCTION AND MOTION

In this section we present the clinical motivation for our work,
presenting the case for using instrumented objects used in
standardised clinical tests.

In formulating tests of limb function and movement,
enforcing a protocol for their administration  provides for
objective and quanti tative measurements. By performing
statistical analysis of the data, various biometrics can be
derived.

Currently, several of these tests use visual based scoring
which introduces a degree of subjectivity and an inability to
perceive subtle motions. This motivates for automating and
monitoring these tests through electronic means by
instrumenting the objects used in these tests, which is still a
new field of research.

We seek to use tests that are widely accepted by the
industry as they have been ratified through years of
deployment. This provides a point of focus and discussion
with clinicians who would be famil iar  with the methodology.

One such test is the Action Research Arm Test (ARAT)
formulated by Lyle [2]. These can help assess two general
types of movement disorders. First are involuntary periodic-



like muscle movements which come under several categories
depending on the intensity of motion, its rapidity and the
underlying causes. In this paper we use the generic term
tremor, which is well  understood although the word is more
commonly associated with neurological disorders. Second are
distorted static hand postures which may be a result of
dystonia, caused by the inability to control the muscle tone.
Then there are various degrees and combinations of these
movements. Gross tremor frequencies occurring in the
movements of the hand were around 1-4 Hz and 6-11 Hz.
However, if the hand is weighed down, these frequencies are
reduced [3]. A higher band of frequencies at 15-30 Hz were
attributed to finger tremor.

Lee et al. [4] built an earlier prototype of the instrumented
device described in this paper which incorporates
accelerometers. Portions of their paper have been reproduced
here for the sake of continuity in discussion.

The analysis of biomedical signals benefit from
decomposition into constituent parts to identify features of
interest. Frequently such signals are nonlinear and
nonstationary so that applying Fourier-based signal
decomposition produce mathematically correct functions, but
these may not have any physical meaning at all. These signal
consti tuents serve only to accommodate the lack of linearity
and stationarity as shown in [5]. Decomposition methods
using basis functions decided a priori have this problem.

To overcome this, recent frequency analyses using data
driven decomposition processes have been introduced.
Singular Spectrum Analysis (SSA) has been used to analyse
naturally occurring physical phenomena and only recently it
has been applied to biological signals. The forms of the
constituent signals it produces are not constrained to
sinusoids, for example. SSA produces readily interpretable
constituent signals such as trends, periodic data and noise 
from short noisy signals.
 In our work we combine tw o types of sensors not often
used together, namely accelerometers and force sensors. This
has the following benefits: i) it is capable of sensing fine
motion and pressure exerted by a person and ii) there is no
need to mount sensors on the body of a person. The next
section describes our setup.

3. EXPERIMENTAL SETUP AND EARLY RESULTS

In this section w e describe how we implement the ARAT and
show some preliminary results . In our work, we focus on
Test1 of the ARAT Grasp Subtest which involves the
grasping of a wooden block 10 cm  in size. This object which3

we w il l  call the Cube, is moved from a specified point
directly to a target. The three main components of our
instrumented object system are:

i) A set of resistive sensors used for measuring forces exerted
on the faces of the Cube.
ii)  A tri-axial accelerometer for acceleration measurements.
iii) A microcontroller converting the force sensor and
accelerometer readings, sending the data to a workstation.

The sensor readings are taken at a rate of 30 samples/sec so
that a maximum frequency of 15 Hz can be reliably recorded
which is sufficient for hand tremor, as discussed in Section 2.
We are in the process of collecting data with actual  patients
who have had a history of stroke and undergone
rehabilitation. We perform a preliminary study on two of
them. As part of our analyses, we filter the raw data with a
noncausal high pass filter, leaving out frequencies of 4 Hz or
lower as these would be due to non-tremor causes.

3.1      Test subjects and patients

We use the standardized patient (SP) methodology to
characterise normal movements and also to simulate
movement disorders caused for example by stroke, which are
tremor and dystonia as described by Barrows [6]. While the
main use of SP is for training, w e extend its use to
characterize movements. While in no w ay can this replace
data from actual patients, the use of SP has i ts  advantages.
First is that it serves to highlight data capture oversights
before actual trials begin. In practice, signal processing and
analysis occurs quite some time after data capture and
deficiencies in the capture process cannot be easi ly
compensated for. Second is that the SP provides a baseline for
comparison as it is quite to difficult to obtain normal
movement data from patients that w hich are considered to be
fully recovered. So we had five healthy subjects and assessed
their movements, which will be classified and discussed in the
next sub-sections. The four sets of movements are repeated
for five times for each person, giving a total of 100 sets of
data. The test subjects were briefed as to what constitutes
dystonia and tremor and to reproduce them to the best of their
ability. Dystonia w as simulated by not attempting to keep the
Cube upright during movements. Tremors were simulated by
stiffening the forearm muscles and attempting to shake the
hand, which  causes involuntary movement in the hands.

3.2      Types of movements

Here we describe the possible types of movements that are
executed in order to simulate movement disorders.

Normal grasp and move
In Fig. 2 we see the Cube being grasped by a r ight handed
person moving it from the lower, hand silhouette to the higher
black target, the trajectory shown by a broken line. We would
expect this task to be completed smoothly, with a minimum of
energy.

Skewed grasp and move
In this type of grasp, we consider loss of muscle function that
prevents the Cube from being held upright. Rather than use
the term tilt, w e use SKEW as this denotes a sense of
imbalance when executing this type of movement.

Grasp and move with tremor and/or skew
When the muscles are struggling to keep the Cube in the air,
the muscles may tense up and voluntary control is  diminished,
resulting in tremor. Depending on the nature of the disorder
there may also be a skewed grasp on the Cube as well. Thus
w e have for a subject, four sets of data representing the
presence or absence of tremor and/or skewed grasp.

3.3      Qualitative results

In Fig. 1. we show the signals obtained for a SKEW
movement reproduced from our earlier work.

Fig. 1. Skew motion - note the force plot where the cube is
dropped rather than placed in the top plot.
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The l ine w ith ‘x’ markers have values that are close to zero
initially. These denote the surface for the hand to grasp. The
non-marker line denotes the force on the bottom sensor
exerted by the mass of the Cube when it rests on a surface. It
goes to zero when the Cube is lifted and this acts as a cue to
indicate the start and end of a movement. This allows
automatic segmenting of signals yielding an accurate measure
of the duration of the movement. From this signal, another
observation from Fig. 1 is that  the subject may incorrectly
drop the Cube rather than placing it on the table.

The accelerometer plots are in the left column of Fig 3. In the
right column are the frequency plots where the signals have
been fi l tered to pass signals greater than 4 Hz. Significantly,
it can be seen that there is no dominant (amplitude wise)
frequency for the 3 axes of movement.

4. THEORY OF ANALYSIS

In this section we consider the theory of SSA and the
determination of the important eigenvalues of the system. In
keeping with the relevant literature, w e will substitute the
term time series for a signal in this section.

4.1      Multivariate Singular Spectrum Analysis

SSA is a subspace analysis method originally developed for
single time variable analysis and extended to multiple
variables describing a common phenomenon. For Multivariate
SSA (MSSA), an important difference is that the analysis is
done across all relevant variables. In this section we describe
the process, a clear explanation which can be found in [7].
For a set of D time series, at each time instant t the data is

d represented by a vector x(t) = {x (t): d=1...D, t=1...N} with
N sample points.

First for the d  series, a window of length M < N is usedt h

dto embed this series into a matrix Y , of size N×M where for
the first and second columns:

d d d dy  = [x (1), x (2),..., x (N)]   1 T

d d d iy  = [x (2), x (3),..., x (N)}{0,1}]  and for column c2 T

d d d iy  = [x (c), x (c+1),..., x (N)}{0,c-1}]c T

for  c  = {1,2...M} and  denoting the transpose operator. ByT

concatenating the embedding matrices, we have the grand
embedding matrix of size N×DM:

1 2 dY = [Y  Y  ...Y ]

In contrast with SSA, for MSSA all time series need to be
normalized to zero mean and unit standard deviation. The
grand covariance matrix C for the system is given by:

C = Y Y / NT

which is DM×DM in size. Using SVD on C  produces the
sorted scalar eigenvalues ë and the eigenvectors ñ which are
of length DM. Each eigenvector consists of D segments of
length M. For the j  eigenvalue and d time series, theth th 

jdcorresponding sub-eigenvector is ñ  which make up the
eigenvector ñ.

The eigenvectors can be concatenated columnwise into a
matrix Ñ also of size DM ×DM. The principal components
(PC) of C are given by the matrix:

E = YÑ 

Each column of E is a PC which is a vector whose elements
are formed by a sum of all the time series weighted by their
eigenvector elements.

A useful step is to reconstruct a signal component
corresponding to the j  eigenvalue. This is done with theth

j jcorresponding PC  with its eigenvector e  taken from E . A
series of vectors z are formed:

j j j = [e (1), e (2),..., e (DM)]   
jz 1 T

j j ij = [{0,1} e (2), e (3),..., e (DM-1)}]  and for column c2
jz T

j j j = [{0,c-1} e (c), e (c+1),..., e (DM-c)}]c
jz T

These are concatenated into an N×M matrix:

j 1 2 MZ  = [z  z  ...z ]

jdThe reconstructed signal or component (RC) x  for the d^ th

channel corresponding to the j  eigenvalue is: th

jd j jdx  = Z  ñ^

4.2      Significant eigenvalues

Performing Singular Value Decomposition (SVD) on a data
set produces a set of principal components which explain the

Fig. 3. Plots of accelerometer outputs of  healthy subject
simulating movement problems in the xyz directions, 
left column. Right column shows frequency plots for 
the respective axis. The y-axis is vertical.

Fig. 2. Cube oriented in the NORMAL position. Ideal
path of object compared to actual path taken
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variability in the data. The method is well covered in the
literature and normally consists of  eigenvector decomposition
of the covariance matrix of the data. This returns a set of
sorted ës in descending order with their corresponding
eigenvectors which are the PCs. The rank of the eigenvalue
indicates the amount of contribution of that component to the
variability of the data. By plotting the ës in terms of their size,
the scree plot ( introduced by Cattell [9]) resembles the scree
which is the rubble at the foot of a mountain as seen in Fig. 4. 

It can be seen that the slope of the scree plot changes
drastically in the first few ës, and settles on a gentle slope for
the rest. This allows identification of  the significant ës and
eigenvectors ignoring the rest which can be attributable to
noise. This reduces the data dimensionality.

The threshold between significant ës and the other  ës can
be determined objectively, where  regression lines are drawn
through sets of consecutive points on the scree plot. The point

sigj  at w hich the largest change between the slopes of
consecutive regression lines is taken as the threshold. For a
set of ë indicated by the indices j, the slope b of a regression
line is given by:

 where k = f(j)

Raîche et al. [8] recently analysed a variety of methods to
determine this threshold. A moderately useful method was
developed by Gorsuch and Nelson [9] and is denoted by

jCNG. For an index  j, the slope b  for points  k = j-2 to l= j for 

sigj = {3...N-3} are computed and the point j  is where the

jlargest b  occurs. This is shown in Fig. 3 for lines RL1 and
RL2, for points j = 3 and 4. 

However Raiche’s paper concluded that the best method

sigto determine j  was that of Zoski and Jurs [10] in terms of
accuracy and parsimonious use of ës. Their test is designated
as ZJb. As compared to CNG, for a point j an additional slope

jb ’ for k’ = j+1 to l=N  is  computed. This is indicated as lines
RL1 and RL3 for point j = 3. We follow the derivation in
[11]where the slopes are compared by way of a t-statistic and
the largest value for j = {3...N-3} will be the threshold point

sigj . The t-statistic is given by:

     where

and

w here the unprimed variables refer to the first set of indices

j{j-2...j} and primed, the second set {j+1...N} w ith N  the

..  number of elements in each set. The s are the standard error

.of estimation between the variables involved and s  the
standard deviation.

5. RESULTS

Here we discuss some initial results and show how the design
of the sensors help us to interpret the obtained readings. This
is followed by an analysis of the smoothness of movement.

5.1      Computational results with MSSA

In the course of our earlier work [4] we resorted to using
frequency domain measures with a measure of success in an
early prototype of the Cube in a limited experiment. However,

with more data, this approach did not yield good results with
the frequency spectrum becoming very cluttered.

When an object is moving with a periodic motion, the
projected movements in an Euclidean three dimensional space
should exhibit the same frequencies of movement. So for a
triaxial accelerometer and the output of each of the axes, we
expect the frequencies corresponding to the dominant
amplitudes to be similar or the same.

However examining the signal from trial H01_TS_4
(notation explained later) in Fig 3, when we identify the
dominant three frequencies, they do not correspond well. For
example, the frequency 6.3 Hz is dominant in the y and z axes,
but not at all for the x axis. This was true for most of our data. 

Thus we consider MSSA, which separates out dominant
harmonic components of a set of signals. The results are
shown in Fig. 5 where the eigenvalue scree diagram is shown
in the top right subplot. The lower right subplot show the RCs
for the first ten ës.

It is observed that for pairs of consecutive ës that have
similar values they may represent actual oscillations [7] in the
original signal. So for RCs corresponding to those pairs of ës
we perform a spectral analysis and select the frequency

RCmaxcorresponding to the largest amplitude and denote it by F .

RCmaxIf the F  of the largest pairs of ës are the same, this would
be the most significant frequency (MSF) in the signal.

Table 2 Frequencies with largest amplitude for the Reconstructed

Components corresponding to eigenvalues of signal in Fig.5.

Rank Eigenvalue ë % Ä to next ë Amplitude Freq (Hz)

1 5.37 5.1 3.37 6.3

2 5.09 37 21.02 6.3

3 3.21 4.3 13.69 6.3

4 3.07 6.2 2.91 6.3

5 2.88 11.1  16.15 6.3

6 2.56 10.1  10.62 6.3

7 2.3 2.3 15.18 0.5

8 2.25 4.1 5.23 0.5

9 2.15 0.5 15.73 0.5

10 2.14 5.6 5.55 7.56

Consider the signal in Fig 3 for which the threshold for

sigsignificant ës is j  =  19. In Table 2 we consider the first ten
ës and see that the first two largest values differ by only 5.1%.

RCmaxFor the corresponding Rcs the F  is the same, 6.30 Hz. In
fact, this is repeated for the 3  and 4  ë. For the 7   and 8   ërd th th th

RC m axand these smaller ës, the F  is  0.5 Hz which we may
interpret as trend. We conclude that these set of signals have
a common dominant frequency of 6.30 Hz which is a sign of
tremor. Referring to the spectrum plot in Fig 3, w e see this in
the second row and less so in the first and third rows.
Subsequent tests show that when there is a large reduction of

sigvalues between the first and second ës, the threshold value  j
is greater  than half of the ës which detects tremor frequencies
at insignificant amplitudes. In this case we use CNG. 

Fig. 4. Scree plot - larger version of that in Fig. 5.
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To summarize then, the steps taken to identify tremor in
a set of triaxial accelerometer signals are:

i) normalize signals to zero mean, standard deviation of 1.
ii) perform an MSSA, obtain the ës.
iii) perform a multiple regression analysis.
iv) note the threshold for significant ës.
v) if threshold  > 1/2 of all available ës, use CNG method.
vi) for significant ës, look for consecutive ones  that differ by

less than 10%.
vii) compute their Reconstructed Components (RC).
viii)for each of the RCs compute its frequency spectrum.
ix) note the dominant frequency corresponding to  the largest

RCmaxamplitude, F

RCmaxx) if the F  of consecutive ës are the same, note the
frequency which is the most significant frequency (MSF).

xi) if 4kHz <MSF< 15 kHz this indicates tremor.

We finally perform this detection step on our data. In our 
data  set,  each trial has an identification (ID) code formulated
as SCC_MM_T where S is H/P for healthy subject and  patient 
respectively, CC  the  subject  code,  MM  the movement type,
NM for Normal, TR for tremor, SK for skew  and TS for
Tremor and Skew with T being the trial number, 1 to 5. The
results are show n in Table 3. Some error is to be expected
because of variation in the execution of the simulated moves.

Table 3 Summary results of the tremor test. False positive and false
negative percentages with actual patient tests.

Trial type False Positive False Negative

all NM (non tremor) 13%

all SK (non tremor) 23%

all TR 20%
all TS 23%

P01_TS 30%

P02_TS 100%

False negatives are interpreted as tremor supposedly present
but not detected due to heal thy subjects being unable to
properly execute the required simulated movements. False
positives are detecting tremor when none is supposed to be
present. For the actual  patients, P01 has a trial which shows
tremor, but the other none. P02 did not show any tremor at all
but in actuality, two hands were used which is an invalid
result, but it was a smooth move.

6. CONCLUSIONS

In summary, we have put forward a mathematically sound

way to combine data from multiple related sensor data to yield
frequency based features of interest.

In highlighting the pitfalls of using data decomposition
methods using predetermined basis functions, we saw that
traditional frequency analyses produces results that may be
conflicting, in this case the dominant frequency of a tremor.
The use of MSSA and the ZJb / CNG significant eigenvalue
identification procedure allowed us to identify the Most
Significant Frequency of movement confidently. 

Future work wil l  involve the analyses of other
accelerometer signals, other types of eigenvalue analyses for
a more robust determination and characterisation of
movement disorders and determination of other biometrics.
This would also include the use of MSSA to analyse
characteristic human movements in 3D such as gait, to
establish its use for providing authentication biometrics.

ACKNOWLEDGEMENT

This work was funded by the Ministry of Education of
Singapore under grant number 2010MOE-IF-005. We thank
Eric Breitenberger and Gilles Raîche for making their 
software available. We also thank the anonymous reviewers
for their useful comments w hich have greatly helped to
improve the quality of this paper.

REFERENCES

Fig. 5.  Normalized waveforms on the left for a healthy subject performing
a tremor and skew movement with the scree plot. The reconstructed
waveforms according to first ten eigenvalues on the lower right subplot.


