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ABSTRACT

Horizon size is an important parameter that influences esti-
mation performance of finite impulse response (FIR) filter. In
this paper, we propose a novel method called switching ex-
tensible FIR filter bank (SEFFB) to adapt horizon size based
on maximum likelihood strategy. We verify that the SEFFB
achieves a significant performance improvement compared
with an ordinary FIR filter which uses a fixed horizon size.

Index Terms— switching extensible FIR filter bank
(SEFFB), FIR filter, state estimation, horizon size

1. INTRODUCTION

Finite impulse response (FIR) filters [1–8] have been studied
as alternatives to the Kalman filter (KF) with infinite impulse
response (IIR) structure. Because FIR filters use recent finite
measurements, they are more robust against accumulation of
modeling and computational errors than the KF. Furthermore,
the H∞ FIR filter [1] and the l∞ FIR filter [2] developed by
Ahn are robust against external disturbances as well as error
accumulation.

One of the most significant current issues in FIR filtering
is to manage the horizon size (also known the memory size)
because it is an important parameter that influences the FIR
filter’s estimation performance. Shmaliy [4–7] developed var-
ious methods to find a best constant (i.e., fixed) horizon size.
These methods are very effective with linear time-invariant
systems. However, when system characteristics vary owing
to external disturbances or modeling uncertainties, it is more
effective to adjust the horizon size constantly than to use a
best constant horizon size.

In this paper, we propose a novel method for adapting
the horizon size of the FIR filter. Our approach is to use the
FIR filter bank called the switching extensible FIR filter bank
(SEFFB). In the SEFFB, the horizon size is adjusted con-
stantly by means of maximum likelihood strategy. We show
that for system with time-varying characteristics, adapting the
horizon size leads to better results than using a constant hori-
zon size.
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2. SWITCHING EXTENSIBLE FIR FILTER BANK
(SEFFB)

In this section, we propose the SEFFB to adapt the horizon
size of the FIR filter. Figure 1 illustrates the concept of the
SEFFB. The FIR filter bank (FFB) consists of n FIR filters,
where n is the number of FIR filters. In this paper, we use
the minimum variance FIR filter (MVFF) [9] as a component
of the FFB. Each MVFF is matched to a particular horizon
size N i

k ∈ Sk = {N1
k , N

2
k , · · · , Nn

k }, where N i
k is the i-th

horizon size in Sk. Sk is the set of horizon sizes at time k. At
time k, the FFB produces n state estimates x̂1

k, x̂
2
k, · · · , x̂n

k

from the n MVFFs. Among these multiple estimates, the
most probable one is selected as x̂k (i.e., the output of the
SEFFB at time k). Filtering algorithm using the SEFFB will
be presented in the following subsections.

2.1. Constructing the FFB

In this subsection, an efficient method to construct the FFB is
proposed. The purpose of constructing the FFB instead of us-
ing a single FIR filter is to obtain multiple estimates from var-
ious horizon sizes. Thus, it is desirable that there are a large
number of MVFFs using different horizon sizes in the FFB.
However, if there are too many MVFFs in the FFB, the com-
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putational burden may become an issue. This type of prob-
lem, trade-off between the estimation performance and com-
putational burden, can be found in the particle filtering. In
the particle filtering, as the number of particles increases, the
estimation accuracy increases but the computational burden
also increases. To solve this problem, the KLD-sampling [10]
was developed. In this method, particles are constantly gener-
ated until the error between the true posterior density and the
sample-based approximation becomes less than the threshold
value. In this way, the number of particles is automatically
determined at each time step. The key idea of our approach
is similar to the aforementioned adaptation methods in the
particle filtering. In our method, a new MVFF is constantly
added to the FFB as long as certain conditions (i.e., the FFB
extension conditions) are satisfied. This process is called the
FFB extension. Details of the FFB extension conditions and
algorithm are described below.

2.1.1. Step 1. Constructing the Basic FFB and Obtaining
State Estimates Using the Basic FFB:

At time k, the basic set of horizon sizes Sk,0 (subscript ‘0’
means the ‘basic’ set) consists of three horizon sizes as fol-
lows:

Sk,0 = {N c
k − d, N c

k , N
c
k + d}

= {N1
k , N

2
k , N

3
k}, (1)

where N c
k − d, N c

k , and N c
k + d correspond to N1

k , N2
k , and

N3
k , respectively. N c

k is the center horizon size (i.e., median
value among the three horizon sizes). d is the equal distance
between the horizon sizes and this is one of the design param-
eters of the SEFFB. It is recommended that the value of d is
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Fig. 3. Start of FFB extension

set to be 1 or 2. As shown in Figure 2, the basic FFB con-
sists of three MVFFs using the horizon sizes in the basic set
of horizon sizes (1). The basic FFB produces three state esti-
mates x̂1

k, x̂2
k, and x̂3

k, which is obtained by using the horizon
sizes N c

k − d, N c
k , and N c

k + d, respectively.

2.1.2. Step 2. Evaluating the State Estimates:

The three estimates obtained from the basic FFB are evalu-
ated to find the most probable one among them. Evaluation
is performed by means of the likelihood function. The state
estimate that produces the maximum likelihood is considered
as the most probable state estimate. Consider the following
linear measurement system with Gaussian noise:

yk = Cxk + vk, vk ∼ (0, R), (2)

where yk is the measurement, and vk is the Gaussian mea-
surement noise with zero mean and the covariance R. Then,
the likelihood function can be written as follows:

L(x̂i
k) = p(yk|x̂i

k)

=
1√

(2π)
q
det(R)

exp
{
−1

2
(yk − Cx̂i

k)
T ×

R−1(yk − Cx̂i
k)
}
, for i = 1, 2, 3. (3)

2.1.3. Step 3. Determining the Mode of the FFB Extension:

The mode of the FFB extension is determined according to
the result of the evaluation on the three estimates obtained
from the basic FFB. If x̂2

k obtained from the MVFF using
the center horizon size N c

k produces the maximum likelihood
among the three estimates (Case 2 in Figure 2), we do not
extend the FFB. If x̂1

k obtained by using the horizon size N c
k−



d produces the maximum likelihood (Case 1 in Figure 2), it
means that small horizon size is more effective to produce
state estimate with high likelihood. In this case, it is necessary
to obtain an estimate one more time using the horizon size
which is smaller than N c

k − d. Thus, we add a new MVFF
using the smaller horizon size N c

k − 2d to the FFB and obtain
a state estimate using it. This process is called the mode 1
FFB extension. On the contrary, if x̂3

k obtained by using the
horizon size N c

k + d produces the maximum likelihood (Case
3 in Figure 2), we add a new MVFF which uses the larger
horizon size N c

k + 2d to the FFB. This process is called the
mode 2 FFB extension. Determining the mode of the FFB
extension is depicted in Figure 2.

2.1.4. Step 4. Performing the FFB Extension:

Figure 3 shows how to start the FFB extension. In case of
the mode 1 FFB extension, the new horizon size N c

k − 2d is
tested for the FFB extension. Using the horizon size N c

k−2d,
we obtain a state estimate from the MVFF and compute its
likelihood. In the left side of Figure 3, x̂k(N

c
k − 2d) and

L(x̂k(N
c
k − 2d)) are the state estimate obtained by using the

horizon sizes N c
k − 2d and its likelihood, respectively. If

L(x̂k(N
c
k − 2d)) is larger than L(x̂k(N

c
k − d)), the MVFF

with the new horizon size N c
k − 2d is approved to be a new

member of the FFB. In other words, if the likelihood obtained
from the new MVFF is larger than the maximum likelihood
obtained from the MVFFs in the current FFB, the new MVFF
is added to the FFB. In case of the mode 2 extension, the FFB
extension is started in a similar manner. (See the right side
of Figure 3). In Figure 3, the extended FFB 1 and 2 are the
FFBs made by the mode 1 and the mode 2 FFB extensions,
respectively. In this figure, MVFFs in the extended FFB are
arranged according to the magnitude of the horizon sizes.

Once the FFB extension is started, it is constantly per-
formed as long as the following conditions are satisfied:
1. The likelihood of the state estimate obtained from the

newly added MVFF is higher than the maximum one
among the likelihood values of the already obtained state
estimates.

2. The number of execution of the FFB extension next is
lower than nlimit, where nlimit is the predetermined limi-
tation on the number of execution of the FFB extension.

3. The newly generated horizon size Nnew satisfies the hori-
zon size conditions.
The horizon size should satisfy the following conditions:

1. At time k, the horizon size used for the MVFF should be
smaller than k.

2. The horizon size used for the MVFF should be larger than
or equal to the dimension of the state vector.

3. The horizon size used in the SEFFB should be within the
interval [Nmin, Nmax], where Nmin and Nmax are the pre-
determined lower bound and upper bound imposed on the
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horizon size.

In the above conditions, nlimit, Nmin, and Nmax are design
parameters of the SEFFB. It is recommended that Nmin is set
to be the minimum available value of the horizon size (i.e.,
the same value as the dimension of the state vector). Since
nlimit and Nmax are the limits to prevent excessive computa-
tional burden, they can be set by considering the maximum
operation time that is allowed in the specific system.

2.2. Switching Process: Selecting the Ultimate State Esti-
mate

Suppose that the extended FFB has n MVFFs when the FFB
extension terminates. If so, the n-th MVFF (i.e., the finally
added MVFF) is the one that produces the maximum likeli-
hood among all the MVFFs in the extended FFB. In the case
that the FFB extension was not performed (i.e., Case 2 in
Figure 2), x̂2

k obtained from the horizon size N c
k is the one

that produces the maximum likelihood. The state estimate
that produces the maximum likelihood is selected as the ulti-
mate estimate x̂k (i.e., output of the SEFFB at time k). The
switching process to select the ultimate estimate is depicted
in Figure 4. As shown in Figure 4, in Case 1 and Case 3,
x̂n
k obtained from the finally added MVFF is selected as the

ultimate estimate x̂k because it produces the maximum like-
lihood. In Case 2, x̂2

k obtained from the MVFF 2 using the
center horizon size is selected.
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2.3. Shifting the Basic Set of Horizon Sizes

Now we explain the process of shifting the basic set of hori-
zon sizes which is the key process of the SEFFB. The horizon
size that produces the ultimate estimate at time k is utilized as
the center horizon size of the basic set of horizon sizes at time
k+ 1. Let N̄k be the horizon size which is matched to the ul-
timate estimate with maximum likelihood at time k. Then, at
time k+1, the basic set of horizon sizes Sk+1,0 is constructed
by using N̄k as follows:

Sk+1,0 = {N̄k − d, N̄k, N̄k + d} (4)
= {N c

k+1 − d, N c
k+1, N

c
k+1 + d}, (5)

where N̄k−d, N̄k, and N̄k+d correspond to N c
k+1−d, N c

k+1,
and N c

k+1+d, respectively. In (4), we see that the newly gen-
erated horizon sizes in Sk+1,0 are distributed around N̄k. In
other words, the basic set of horizon sizes are shifted so that
the horizon sizes are located in the vicinity (+d and −d) of
N̄k. Thus, the FFB at time k + 1 can utilize the horizon sizes
that can produce better performance than the FFB at time k.
In this way, the horizon sizes for the FFB are constantly ad-
justed so that they produces the higher likelihood. The pro-
cess of shifting the basic set of horizon sizes is depicted in
Figure 5.

3. NUMERICAL EXAMPLE

In this section, we test the SEFFB with the sinusoid signal
model [7, 8], which is given as follows:

xk+1 =

[
cos( π

32 ) + δk sin( π
32 )

−sin( π
32 ) cos( π

32 ) + δk

]
xk + wk,(6)

yk =
[
1 + 0.25δk +0.25δk

]
xk + vk, (7)

where wk and vk are zero-mean white Gaussian noises with
covariances Q = diag(0.12 0.12) and R = 0.22, respec-
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tively. δk is a variable for injection of temporary model un-
certainty. The simulation is performed for the interval 0 <
k ≤ 400, where k is the time index. Design parameters of the
SEFFB are taken as d = 1, nlimit = 10, Nmin = 2, Nmax =
50. To make the comparison fair, the minimum and the max-
imum horizon sizes of the MVFF are set to be the same as
Nmin and Nmax of the SEFFB, respectively.

To begin with, we consider the case that model uncer-
tainty does not exist (i.e., δk is zero at all times). Figure 6
represents the mean squared errors (MSEs) of the MVFF for
diverse horizon sizes in this case (solid line). Figure 6 also
represents the MSE of the SEFFB (dashed line). Note that
the MSE of the SEFFB does not change according to the hori-
zon size. In Figure 6, the best (i.e., minimum MSE) horizon
size of the MVFF, Nbest, is 16 and its MSE is 2.305× 10−2.
The worst (i.e., maximum MSE) horizon size of the MVFF,
Nworst, is 2 and its MSE is 2.071 × 10−1. The MSE of the
SEFFB is 3.003×10−2. If we define the MSE of the best and
worst horizon sizes as 100% and 0% of the best performance,
respectively, it can be posited that the SEFFB achieves 96%
of the best performance. Thus, it is verified that the SEFFB
shows quite good performance when model uncertainty does
not exist.

Now we consider the case that temporary model uncer-
tainty exists. In this paper, two different levels of temporary
model uncertainty (δk = 0.1 and δk = 0.05) are considered.
The first case of temporary model uncertainty is defined as
follows:

δk =

{
0.1, 100 ≤ k ≤ 150,
0, otherwise. (8)

Figure 7 represents MSEs of both the MVFF and the SEFFB
in this case (i.e., δk = 0.1). The best horizon size of the
MVFF, Nbest, is 2 and its MSE is 1.699. The MSE of the
SEFFB is 1.144 × 10−1, which is smaller than than of the
MVFF using the best horizon size.
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The second case of temporary model uncertainty is de-
fined as follows:

δk =

{
0.05, 100 ≤ k ≤ 150,
0, otherwise. (9)

Figure 8 represents MSEs of both the MVFF and the SEFFB
in this case (i.e., δk = 0.05). In this case, the best horizon
size of the MVFF, Nbest, is 7 and its MSE is 4.938 × 10−2.
The MSE of the SEFFB is 4.605 × 10−2, which is smaller
than than of the MVFF using the best horizon size. In the
both cases of temporary model uncertainty, the MSEs of the
SEFFB are smaller than those of the MVFF which uses the
best constant horizon size. Therefore, it is verified that the
SEFFB shows better performance than the single FIR filter
using the best constant horizon size when temporary model
uncertainty exists.

4. CONCLUSION

In this paper, we have proposed the SEFFB to adapt the hori-
zon size. In the case that temporary model uncertainty exists,
the SEFFB showed better performance than the MVFF using
the best constant horizon size. The SEFFB also showed quite
good performance in the case that temporary model uncer-
tainty does not exist. Therefore, it is verified that the SEFFB
achieves significant improvement in the performance com-
pared with the single FIR filter which uses the best constant
horizon size. Since various FIR filters other than the MVFF
can be used as a component of the SEFFB, it is expected that
the SEFFB can be used widely in FIR filtering.
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