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ABSTRACT 

 

A new family of transforms, which is called the conjugate 

symmetric sequency-ordered generalized Walsh-Fourier 

transform (CS-SGWFT), is proposed in this paper. The CS-

SGWFT generalized the existing transforms including the 

conjugate symmetric sequency ordered complex Hadamard 

transform (CS-SCHT) and the discrete Fourier transform 

(DFT) as the special cases of the CS-SGWFT. Like the CS-

SCHT and the DFT, the spectrums of the CS-SGWFT for 

real input signals are conjugate symmetric so that we need 

only half memory to store the transform results. The proper-

ties of the CS-SGWFT are similar to those of the CS-SCHT 

and DFT, including orthogonality, sequency ordering, and 

conjugate symmetric. Meanwhile, the proposed CS-SGWFT 

has radix-2 fast algorithm. Finally, applications of the CS-

SGWFT for image noise removal and spectrum estimation 

are proposed. 

 

Index Terms—Hadamard transform, Walsh transform, 

Discrete Fourier transform, Sequency ordered, Conjugate 

symmetric
 
 

 

1. INTRODUCTION 

 

The discrete orthogonal transform (DOT) is widely used 

many applications. Recent researches are focus on the gen-

eralization to Walsh Hadamard transform (WHT), including 

unified complex Hadamard transform (UCHT) [1], 

sequency ordered complex Hadamard transform (SCHT) [2], 

conjugate symmetric sequency orderd complex Hadamard 

transform (CS-SCHT) [3], sequency ordered generalized 

Walsh Fourier transform (SGWFT) [4], are proposed.  

In [3], the rows of conjugate symmetric sequency orderd 

complex Hadamard transform (CS-SCHT) matrix are ar-

ranged in ascending order so that it has sequency ordered 

property. Moreover, the CS-SCHT spectrum is conjugate 

symmetry for real input signals which reveals that we can 

save half memory size to store the transform values. The 

CS-SCHT also has Nlog2N fast algorithms. 

                                                 
 
This work was supported by the National Science Council, 

R.O.C. under Contract 98-2221-E-002-077-MY3. 

In [4], the SGWFT tune the transform behavior among the 

WHT, SCHT and the DFT by a single parameter p. It is 

shown that the properties of the SGWFT include unitary, 

reciprocal inverse, conditional shift invariant, radix 2 fast 

algorithms. Despite the flexibility and well structured of the 

SGWFT, it lacks of the conjugate symmetric property like 

the CS-SCHT so that for real input the SGWFT need as 

double memory size to store the transform value as the CS-

SCHT does. In [5], the conjugate symmetric discrete or-

thogonal transform (CS-DOT) provide a systematic way to 

generate the orthogonal matrix with conjugate symmetric 

property which generalize the CS-SCHT and DFT.  

In this paper, we propose the conjugate symmetric sequency 

ordered generalized Walsh Fourier transform (CS-SGWFT) 

as special cases of the CS-DOT. The CS-SGWFT not only 

has the properties and the flexibility like the SGWFT but it 

also fits the conjugate symmetric property like the CS-

SCHT. We will use the CS-DOT generating method with 

specific generating function to generate the CS-SGWFT 

matrix kernel. The CS-SGWFT holds the properties of the 

SGWFT including orthogonality, sequency ordered, ap-

proaching to the DFT and radix-2 fast algorithm implemen-

tation. Moreover, its conjugate symmetric property as the 

CS-SCHT is useful to process the pure real input data. We 

will show how the CS-SGWFT can gradually change the 

transformed signal from CS-SCHT to DFT results. 

The organization of this paper is as follows: In section 2, we 

review the CS-DOT generating process proposed in [5]. In 

section 3, we propose CS-SGWFT as the CS-DOT special 

case and show its properties and the relationship between 

the CS-SCHT, CS-SGWFT and the DFT. In section 4, we 

apply the CS-SGWFT to image noise removal and spectrum 

estimation and show their benefit. Finally, we make conclu-

sions in section 5. 

 

2. CONJUGATE SYMMETRIC DISCRETE 

ORTHOGONAL TRANSFORM (CS-DOT) 

 

In this section, we review the conjugate symmetric discrete 

orthogonal transform (CS-DOT) matrix for N = 2
k
 in [5]. Let 

the periodic function W(t) defined over 0  t < 1 which has 

the following properties: 

P1. W(t+1) = W(t)  

P2. W(t) = exp(ia(t)) where a(t) is a real for all t  



P3. W(t+1/2) = -W(t)  

P4. W(-t+1/2) = -W
*
(t) where * is conjugate symbol 

From the above definition, we can generate an N by N CS-

DOT matrix H using the following procedure: 

Step 1. Generating basis matrix U as 

 U(k, r) = W(2
r
k/N) = W(2

(r-l)
k) (1) 

For 0  r < l and 0  k < N 

Step 2. From (1), we get l basis in terms of column vectors 

of U. Then we can generate full rank matrix H as 
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 m = <ml-1, ml-2, ml-3,…m0>2 (3) 

mr is the binary representation of m. By the definition of 

W(t), we can realize that the degree of freedom of U(k,0) is 

N/4. For example, let N = 16 and set U16(0,0) = 1, according 

to P1 to P4, we can express U16(k,0) as 

 U16(k,0) = [1 w1 w2 w3 w4 –w
*
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That is, we can only set four parameters w1, w2, w3, w4. 

From P2 the values of W(t) are on unity circle for all t and 

meanwhile a(t) can be arbitrary real function. By the gener-

ating process (1) and (2), the elements of H are all on unity 

circle and their absolute values are all equal to unity. 

In [5], the conjugate symmetric property of H is proved and 

it shows that the CS-DOT can also have radix-2 fast algo-

rithm as well. The example for 16 points CS-DOT is shown 

in Fig. 1. Meanwhile, the conjugate symmetric sequency 

order Hadamard transform (CS-SCHT) and the DFT are 

shown as special cases of the CS-DOT. Finally, it also 

shows that the CS-DOT is useful to spectrum estimation. 

 

 
Fig. 1. CS-DOT signal flow diagram for N = 16 

3. CS-SGWFT 

 

We propose the conjugate symmetric sequency ordered 

generalized Walsh-Fourier Transform (CS-SGWFT) as the 

special case of the CS-DOT. We define conjugate symmet-

ric generalized Rademacher function (CS-GRF) Rp,cs(t), 

which is modified version of the generalized Rademacher 

function (GRF) proposed in [6]. It has a simple controllable 

parameter p and is partially defined over four regions from 

[0,1/4), [1/4,1/2), [1/2,3/4) and [3/4,1) as 
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p ,cs
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   1 /2 ,3 /4 0 ,1 /4

 R ( )  = -R ( )
p ,cs p ,cs

t t  (7) 
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3/4 ,1 0 ,1 /4
 R ( )  = R (1 /4- )

p ,cs p ,cs
t t  (8) 

Where p is an integer and note that Rp,cs(t) = Rp,cs(t+1). 

From the above definition, we can use the one-quarter val-

ues defined in [0,1/4) to get the entire CS-GRF function 

according to the properties P3 and P4 of the W(t) as follows: 

 W(t+1/2) = W
*
(-t+1/2) = -W(t) (9) 

Let t’ is shift by 1/4 of t expressed as t = 1/4+t’, from (5) to 

(8) we can get the following property symmetric to t = 1/4: 

 W(t+1/4) = -W
*
(-t+1/4) (10) 

Therefore W(t) is conjugate anti-symmetric to t=1/2 over 

[0,1/2) so that we can use one-quarter values to get entire 

values of W(t). We can see that Rp,cs(t) satisfies the proper-

ties in P1 to P4. When we use Rp,cs(t) as the generating func-

tion to get the CS-DOT matrix, the obtained results is called 

the CS-SGWFT matrix. In addition to the CS-DOT proper-

ties such as conjugate symmetric, orthogonal, fast algorithm, 

the CS-SGWFT also has the following properties: 

1. Generalization: When p = 4, the CS-SGWFT matrix 

Gp,cs is actually the conjugate of the CS-SCHT matrix in [3]. 

Here we will directly show that for N = 16, the CS-SGWFT 

matrix is 
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Compared with the 16pts CS-SCHT matrix H16 generated by 

the method in [3], we can realize that the relationship be-

tween the CS-SGWFT matrix G4,cs and H16 is 

 G4,cs = H
*
16 (12) 

We can see that although the CS-SGWFT for p = 4 and the 

CS-SCHT are the same, the generating process of the CS-

SGWFT are much simpler and well structuralized than the 

CS-SCHT. Therefore, it is much easier for analyzing the 

properties and performances of the CS-SGWFT than the 

CS-SCHT. 

On the other hand, when p grows larger, the CS-SGWFT 

approaches to the DFT in that the CS-GRF waveform de-

fined in (5) to (8) is close to the sinusoidal function. That is, 

when p tends to infinity we can express R,cs(t) as:  

 R,cs(t) = exp(-i2t) (13) 

R,cs(t) is exactly the sinusoidal function with frequency f = 

1. Using the matrix generating process we can realize that 

the basis of Gp,cs is actually the same as the DFT matrix so 

that the CS-SGWFT is identical to the DFT. Especially, 

when p is a multiple of N (p = aN), we can express the val-

ues of U(0,k) sampling from Rp,cs(t) as follows:  

 U(0,k) = exp(-i2k/N) (14) 

We can easily observe that U(0,k) is exactly the first har-

monic basis of the DFT matrix so that the CS-SGWFT and 

the DFT are exactly the same under p = aN where a is an 

integer. 

In Fig. 2 we plot the generalization relationships among the 

DOT, CS-DOT, CS-SGWFT, CS-SCHT and DFT and show 

the special case conditions. 

 
Fig. 2. Relationships among the CS-DOT, the CS-SGWFT, the 

CS-SCHT, and the DFT. The CS-SCHT and the DFT are the spe-

cial cases of the CS-SGWFT where p = 4 and aN. 

 

In Fig. 3, we can see that the CS-GRF waveforms gradually 

change from steps into the sinusoidal waveform. The num-

ber of steps gradually increases and the step size gradually 

decreases. For each CS-GRF Rp,cs(t), we can generate the 

orthogonal matrix Gp,cs using the CS-DOT generating pro-

cess in the previous section. We call Gp,cs the conjugate 

symmetric sequency ordered generalized Walsh-Fourier 

transform (CS-SGWFT) matrix since the CS-SCHT and the 

DFT are the special cases of the CS-SGWFT where p = 4 

and aN. 

 

 
Fig. 3. Waveforms of the CS-GRFs for different phase quantiza-

tion parameter p. 

 

Let  denoted as the norm-2 (i.e., the maximum singular 

value) of the difference matrix between the CS-SGWFT 

matrix Gp,cs and the DFT matrix F as follows: 

 
,

2

G F
p c s

    (15) 

Let N = 64, we plot  versus p as the distance measurement 

in Fig. 4 and we can observe that the value of  decreases 

with p so that the CS-SGWFT approaches to the DFT when 

p grows larger. 

 

 
Fig. 4. The difference between the CS-SGWFT matrix and the 

DFT matrix for N = 64. 

 

2. Sequency-Ordering: The CS-SGWFT basis arranges in 

the sequency order. Like the CS-SCHT, the zero crossing 

numbers in the m
th

 row of the CS-SGWFT matrix increases 

with m. For example, in Fig. 5, we plot the 2
nd

 to the 9
th

 

rows of the CS-SGWFT matrix for N = 64 and p = 10. We 

realize that the number of zero crossings increases with m. 

Therefore, we can specify the low and high frequency com-



ponents of the signal so that the CS-SGWFT is suitable for 

spectrum analysis. 

 

 
Fig. 5.  The 2nd to the 9th rows in the CS-SGWFT matrix for N = 64 

and p = 10. The solid and dash lines are the real and imaginary 

parts of the basis. 

 

To show how the CS-SGWFT results change from the CS-

SCHT to the DFT, we use the rectangular wave input signal 

as an example defined as 

   
1 fo r      0   to   4  

0 fo r      5   to   6 4

n
x n

n





 (16) 

For p = 2,4,8,16,32,64, the corresponding CS-SGWFT 

waveforms for each p are shown in Fig. 6. We can see that 

the transform results of the CS-SGWFT approach to that of 

the DFT when p increases. 

 

 
Fig. 6. Transform results of rectangular wave with different p in 

CS-GWFT for N = 64 and p = 2, 4, 8, 16, 32, and 64 from left to 

right and from top to bottom. 

 

4. APPLICATIONS  

 

4.1. Image Noise Removal 

 

The CS-SGWFT is suitable for image interference removal 

under the circumstance that the interference is quantized 

sinusoidal signal so that the interference waveform looks 

like step-wise signals just as the CS-SGWFT basis. We 

show the block diagram of the image recovery process as in 

Fig. 7. We can realize that for the inference signal s(n) 

which can be modeled as linear spanned by quantized sinus-

oidal waveforms as follows 

2
( )  =  sp a n e x p

j k n m m
s n

N

    
  

  

 for k = 0,1,2,… (17) 

Using the SGWFT coding and low pass filtering we can 

have good performance in interference removal. 

 

 
Fig. 7 Image interference removal block diagram 

 

We use the contaminated “Lena” image recovery in Fig.8 as 

an example. From the example we can see that using CS-

SGWFT for p = 8 has better signal recover performance 

than the other transforms. Therefore, we can realize that 

when the image is interfered by the quantization block sig-

nals, the CS-SGWFT can have better performance in recov-

ery than the DFT. 

 
Fig. 8. Noise removal using CS-SGWFT. (a) original image (b) 

noised image (c) recovered image by CS-SGWFT for p = 8 (d) 



recovered image by DFT (e) recovered image by CS-SGWFT for p 

= 4 (f) recovered image by CS-SGWFT for p = 16 

 

4.2. Spectrum Estimation 

 

In [3], it is shown that the CS-SCHT is suitable for spectral 

estimation in that the CS-SCHT has sequency order property 

as the DFT and we can specified the high and low sequency 

(frequency) region of the signal. For the CS-SGWFT, we 

can show that it is also suitable for spectrum estimation as 

the CS-SCHT and the DFT. We use the 3kHz sinusoidal 

waveform under sampling frequency 512kHz as an input 

example. We plot its 512 points DFT, CS-SCHT and CS-

SGWFT (p = 8) magnitude spectrum in Fig. 9. Compared to 

the CS-SCHT, we can realize that the CS-SGWFT magni-

tude spectrum approaches more closely to the DFT spectrum. 

By the above example, we can see that the power compac-

tion rate of the CS-SGWFT is about 85.7% ((473.6/512)^2) 

which is much higher than the CS-SCHT is (52.5%). There-

fore it is better using the CS-SGWFT for p = 8 instead of the 

original CS-SCHT. 

 

 
Fig. 9. Sinusoidal waveform magnitude spectrum of the CS-SCHT, 

CS-SGWFT (p = 8) and DFT 

 

5. CONCLUSION 

 

Based on the CS-DOT generating method, the CS-SGWFT, 

which generalizes the currently existing transforms, such as 

the CS-SCHT and the DFT, was proposed. As the original 

existing transforms, the proposed CS-SGWFT also has the 

conjugate symmetric, orthogonality and sequency ordering 

properties. Meanwhile, the CS-SGWFT also has the radix-2 

fast implementation algorithms as the DFT does. In addition, 

we can easily switch the transform behavior from the CS-

SCHT to DFT and we can observe that the result waveform 

morphing smoothly. Finally, we use signal noise removal as 

the applications of the CS-SGWFT. We believe that there 

will be more useful applications of the CS-SGWFT in the 

future. 
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