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ABSTRACT

We propose a method for recovering the parameters of pe-

riodic signals with finite rate of innovation sampled using a

raised cosine pulse. We show that the proposed method ex-

hibits the same numerical stability as existing methods of its

type, and we investigate the effect of oversampling on the per-

formance of our method in the presence of noise. Our method

can also be applied to non-periodic signals and we assess the

efficacy of signal recovery in this case. Finally, we show that

the problem of cochannel QPSK signal separation can be con-

verted into a general finite rate of innovation framework, and

we test the effectiveness of this approach.

Index Terms— Raised Cosine, QPSK, Finite Rate of In-

novation, Signal Separation

1. INTRODUCTION

Due to its practical importance, the problem of separating

cochannel digital communications signals has been exten-

sively studied by the communications community. For exam-

ple, separation of cochannel signals can be used to improve

the demodulation performance in the presence of cochannel

interference.In the literature, a number of methods have been

proposed for this problem. Most of them are based on tradi-

tional statistical techniques such as PCA [1] and ICA [2][3],

as well as taking advantage of such signals transmitting from

a finite set of symbols [4][5].

In this paper we study Finite Rate of Innovation (FRI)

methods for signal reconstruction. FRI methods have previ-

ously been applied to medical imaging [6], ECG and EEG

[7][8], image processing [9], and compression [10]. They

have not however been applied very much to digital commu-

nications, and in particular not to the problem of source sep-

aration. We adapt an existing finite rate of innovation method

to a raised cosine sampling kernel, chosen for its existing use

as a filter in digital communications, and show how this can

be used to perform cochannel demodulation of digital com-

munications signals in the single sensor, multiple transmit-

ters case. We consider a linear instantaneous mixing model,
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which is characteristic of signals with dominant line of sight

components, e.g. satellite signals.

In section 2 we first adapt the method proposed in [11] for

a periodic stream of Dirac pulses sampled with a sinc sam-

pling kernel, to a periodic stream of Dirac pulses sampled

with a raised cosine kernel. Subsequently, we test the prac-

tical efficiency of this approach. In section 3, we describe

the problem of separating mixed QPSK signals and propose a

practical solution. Section 4 is concerned with the evaluation

of our method. Finally, Section 5 concludes the paper.

2. FRI FRAMEWORK

2.1. Signal Sampling and Reconstruction

The signal we consider is periodic with period ρ and K Dirac

pulses in each period. Hence, the signal admits the represen-

tation:

x(t) = ∑
k∈Z

ckδ (t − tk) (1)

The periodicity condition signifies that ck+K = ck and

tk+K = tk +ρ .

As shown in [11], (1) can be rewritten as

x(t) = ∑
m∈Z

(

1

ρ

K−1

∑
k=0

cke
− 2πimtk

ρ

)

e
2πimt

ρ (2)

Using (2), we get the Fourier transform of x(t):

X [m] =
1

ρ

K−1

∑
k=0

cke
− 2πimtk

ρ (3)

As in [11], an annihilating filter is used in order to find the

locations of the Dirac pulses. The z-transform of the annihi-

lating filter is given by (4)

A(z) =
K−1

∏
k=0

(1− e
− 2πitk

ρ z−1) (4)

As each exponential in (3) is annihilated by a root of A(z), we

get:



A[m]∗X [m] = 0 (5)

(Here, A[m] is the Fourier transform of the annihilating

filter)

In this paper we sample x(t) with a raised cosine kernel,

rcT,α . The kernel is given by:

rcT,α =
sin(πt

T
)cos(παt

T
)

πt
T
(1− ( 2αt

T
)2)

(6)

The parameters T , α , should be chosen such that the

bandwidth of the kernel exceeds the rate of innovation, i.e.

1+α

T
π ≥ 2K

ρ
(7)

Set M =
⌊

(1+α)ρ
2T

⌋

and take N samples at equally spaced

intervals, t = nTs, n = 0, ...,N −1, N ≥ 2M+1

yn =

ˆ ∞

−∞

rcT,α(t −nTs − t ′)x(t ′)dt ′ (8)

The samples yn obtained through (8) are sufficient to re-

construct x(t). This is based on the following arguments: To

recover the signal parameters from the samples yn we use the

Fourier series of x(t) to rewrite yn as

yn = ∑
m

X [m]

ˆ ∞

−∞

rcT,α(t −nTs − t ′)e
2πimt′

ρ dt ′ (9)

=
M

∑
m=−M

X [m]r̂cT,α(
2πm

τ
)e

2πimnTs
ρ (10)

Note that (10) is a system of linear equations in X [m],
where r̂cT,α is the Fourier transform of rcT,α .

This system can be rewritten as (11), where X ′[m] =
X [m]r̂cT,α(

2πm
τ )

yn =
M

∑
m=−M

X ′[m]e
2πimnTs

ρ (11)

Thus, following the arguments in [11], we conclude that (11)

is not invertible if
ρ
Ts
= p

q
, for some arbitrary fraction

p
q

with

p < N, and in all other cases is of maximal rank. Once X [m]
is computed (from (11)), the annihilating filter A[m] can be

obtained from the system (12).

X [m] =−
K−1

∑
k=0

A[k]X [m− k] (12)

Relying on A[m], we determine the z-transform A(z) and

its roots uk = e
−2πutk

ρ . Using the roots we get the locations of

Dirac pulses tk. Finally, to find the pulse weights, we solve

the system (13).
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Fig. 2. Logarithm of the mean squared error of the recovered

signal compared to the original signal

X [m] =
1

ρ

K−1

∑
k=0

cke
− 2πimtk

ρ =
1

ρ

K−1

∑
k=0

ckum
k (13)

The derivation for a root raised cosine filter proceeds ex-

actly as above.

2.2. Numerical Simulations

In order to test the practical efficiency of the proposed

method, we apply it to a signal with the following param-

eters: T =
√

3
2

, α = 0.3, tk = k+ 1, ck = k− 6, k = 0, ...,9,

ρ = 15, Ts =
√

2
3

, N = 40.
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Fig. 1. Original and recovered signals

Figure 1 shows that with these parameters the recovered

signal is indistinguishable from the recovered signal, while

Figure 2 clearly indicates the improvement achieved by over-

sampling when noise is added to the signal. More sophisti-

cated methods of dealing with noise are discussed in are dis-

cussed in [12] .



2.3. Numerical Stability

We consider the proposed methods for the parameters, N =
M =

⌊

1.3
2τ

⌋

,τ = 100, which are chosen to ensure the invertibil-

ity of the system (11).
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Fig. 3. Logarithm of the condition number of the linear system

for the ratio Ts
τ

According to Figure 3, as Ts
ρ → 0, the condition number

of the linear system grows very fast. Indeed, although the ra-

tios were taken to be of the form
√

1.2
1000

k, there are some spikes

which are probably caused by this ratio being very close to

some arbitrary fraction
p
q

, p < N, which would mean the sys-

tem is very close to being uninvertible, as discussed in [11].

3. QPSK SIGNAL SEPARATION

3.1. QPSK Signals

In this section, the proposed method is applied to the sep-

aration of QPSK signals. These signals can be described

as follows. We transmit a series of binary digits. To do

so, we encode each block of n bits as a constellation point

drawn from a set of size 2n in C. In the particular case

of the QPSK signals we consider, the constellation set is

{e
πi
4 ,e

πi
4 + 2πi

4 ,e
πi
4 +πi,e

πi
4 + 3πi

2 }, or some rotation of these sym-

bols. The data is encoded only by the phase of the symbol,

and not by the amplitude. As a result of encoding, a series

of symbols ck is produced. We would like to transmit ck as a

series of weighted Dirac pulses.

x(t) =
K

∑
k=1

ckδ (t − kT − τ) (14)

In this case, T is the symbol period and τ is the delay.

Hence the symbol ck is transmitted at time kT + τ . To re-

strict the transmission to a small frequency band, we filter the

signal. Ideally, we would like to use a filter with frequency

response 1 in the band we wish to transmit in and 0 else-

where. In such an approach, δ (t) is replaced by sinc(t). As

sinc(t) decays slowly, significant intersymbol interference oc-

curs. Instead, we use a root raised cosine filter. Its impulse

response is:

rrcT,α(t) =
1√
T

sin(π(1−α)t
T

)+ 4αt
T

cos(παt
T
)

πt
T
(1− ( 4αt

T
)2)

(15)

Where α ∈ [0,1] is the roll-off factor. Note that for α =
0 (15) is just a scaled sinc function. This has much faster

convergence in the time domain (for α > 0), at the cost of

using more bandwidth in the frequency domain, by a factor

of 1+α . Note that convolving an rrc filter with itself gives a

raised cosine (rc) filter, with impulse response as given in (6).

(6) satisfies the Nyquist property, because it vanishes at non-

zero multiples of the symbol period, t = kT , k 6= 0. Conse-

quently, applying a matched filter at the receiver eliminates

intersymbol interferences.

In this case, the filtered signal can be calculated from formu-

lae:

B(t) =

ˆ ∞

−∞

x(t ′)rrcT,α(t − t ′)dt ′

=

ˆ ∞

−∞
∑
k

ckδ (t ′− kT − τ)rrcT,α(t − t ′)dt ′ (16)

= ∑
k

ckrrcT,α(t − kT − τ)

Note that in practice this pulse-shaping convolution sum

is only computed to a small number of terms at the transmitter.

3.2. Transmitted and received signals

The baseband signal is multiplied by a carrier wave:

C(t) = e2πi( f t+φ) (17)

with carrier frequency f and phase offset φ . The signal

S(t) = C(t)B(t) is transmitted through a channel, and the re-

ceived signal is obtained:

R(t) = G(t)∗S(t)+n(t) (18)

Here, G(t) is the channel response, and n(t) is additive

white Gaussian noise. We assume that G(t) = gδ (t), where

g ∈ R
+ is a constant. (Note that any phase change caused by

the channel can be absorbed into the parameter φ )

Hence, the received signal can be written out as follows:

R(t) = ge2πi( f t+φ)∑
k

ckrrcT,α(t − kT − τ)+n(t) (19)



3.3. Signal mixture

In our study, we assume that there are two sources, the a-

side source and the b-side source, transmitting independent

streams of symbols ak, and bk. These sources are modelled

by a linear mixture model, hence the signal admits the repre-

sentation:

R(t) = g1e2πi( f1t+φ1)∑
k

akrrcT,α1
(t − kT − τ1)

+g2e2πi( f2t+φ2)∑
k

bkrrcT,α2
(t − kT − τ2) (20)

Here, we adopt the convention that the stronger of the two

signals is referred to as the a-side signal, i.e. g1 ≥ g2

In our study, we assume that α1 = α2 and that the receiver

is able to exactly filter the signal it receives with a matched

root raised cosine filter. We also assume that | f2 − f1| ≪
1
T

.Then, we have:

R(t) = g1e
2πi( f1t+φ1) ∑

k

akrc(t − kT − τ1) (21)

+g2e
2πi( f2t+φ2) ∑

k

bkrc(t − kT − τ2)

Consequently,

R(t)

g1e2πi( f1t+φ1)
= ∑

k

akrc(t − kT − τ1)

+
g2

g1
e2πi(( f2− f1)t+φ2−φ1)∑

k

bkrc(t − kT − τ2) (22)

Assuming that 1
T

is large in comparison to | f2 − f1|, we

get:

R(t)

g1e2πi( f1t+φ1)
≈ ∑

k

akrc(t − kT − τ1)+∑
k

b
′
krc(t − kT − τ2)

(23)

Where b
′
k =

g2
g1

e2πi(( f2− f1)(kT+τ2)+φ1−φ2)bk. Note that this ap-

proximation is exact if the two carrier frequencies are the

same, i.e. f1 = f2.

Signal (23) is a stream of Dirac pulses filtered with a

raised cosine filter, and after recovering them, it is just a mat-

ter of sorting successive samples into the right signal. For

example, if τ1 < τ2, the stream of recovered symbols is ck,

ak = c2k−1, bk = c2k, k = 1, ...,K.

3.4. Recovery by approximation to a periodic signal

In our study, we consider a signal x(t) consisting of the first

K Dirac pulses of an infinite series of Dirac pulses. We as-

sume that ρ is proportional to K, ρ = aK. We further con-

sider that all the Dirac pulses are contained in a subinter-

val of the period, [0,bρ], b < 1. As K → ∞, the contribu-

tions from each Dirac outside the interval [0,ρ] to y(t) =<

r̂cα,T (t
′− t),x(t ′) > (that would exist if the signal was peri-

odic) are O( 1
t3 ), where t is the distance from the sampling

point. Hence their overall contribution is O( 1
ρ2 ). In other

words on the intervals [0,baK], the filtered periodic signals

converge to the filtered non-periodic signals in the ℓ∞ sense.

This justifies using the method for periodic signals on non-

periodic signals. However, such an approach would not work

well for a sinc sampling kernel because of its slow decay.

Note that since the original signal is not periodic, the param-

eter ρ is used only in the recovery algorithm, and so we can

view it as a tunable parameter in the recovery algorithm.

4. APPLICATION TO QPSK SIGNALS

4.1. Signal Separation

In this section, the proposed method is applied to the signal

separation in the framework described in section 3. Here, we

assume that f1 = f2. We consider the signal with the parame-

ters T = 1, α = 0.3, g1 = g2 = 1, τ1 =−0.1, τ2 = 0.3, N = 25

and when recovering, ρ = 30

We assume the a-side signal transmits [e
πi
4 +πi,e

πi
4 + πi

2 ,e
πi
4 ,

e
πi
4 +πi,e

πi
4 ], while the b-side signal transmits [e

πi
4 ,e

πi
4 ,e

πi
4 + 3πi

2 ,

e
πi
4 + πi

2 ,e
πi
4 ]. The results obtained using the proposed method

are presented in Figures 4 and 5.
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Fig. 4. Real parts of original and recovered signals

As suggested by Figure 4 the recovery is not perfect.

However if we know the times of the Dirac pulses, we achieve

much better recovery, (as seen in Figure 5).
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Fig. 5. Real parts of original signal and signal recovered using

known times
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Fig. 6. Real parts of original and recovered signals, using win-

dowing

4.2. Windowed signal recovery

Due to the complexity of the algorithm, and to the problems

with numerical stability, applying the proposed method to a

long signal is impractical. Instead, we look at sampling and

recovering just a small windowed part of a larger signal. We

take the same signal parameters as previously with longer ran-

domly generated signals. For recovery, we take Ts = 0.05T ,

N = 90, ρ = 7
√

2, and recover two symbols from each side.

Note that ρ had to be selected with some care to achieve

the level of success shown in Figure 6. The best recovery is

achieved in the centre of the period being considered, and this

is unsurprising, because this is where the contributions from

outside the period being considered are weakest.

5. CONCLUSIONS

We have shown that a stream of Dirac pulses sampled using a

raised cosine filtered can be reconstructed exactly from sam-

ples taken at the rate of innovation. We have also shown how

to transform mixed QPSK signals into a form where this can

be used to separate them. Further work could focus on im-

proving the robustness of the parameter recovery and increas-

ing the length of the signals that can be effectively recovered.
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