
DYNAMIC RANGE REDUCTION OF AUDIO SIGNALS USING MULTIPLE ALLPASS
FILTERS ON A GPU ACCELERATOR

Jose A. Belloch⋆† Julian Parker⋆ Lauri Savioja† Alberto Gonzalez⋆† Vesa Välimäki⋆

⋆† iTeAm, Universitat Politècnica de València, Valencia, Spain
⋆ Dept. of Signal Processing and Acoustics, Aalto University, Espoo, Finland

† Dept. of Media Technology, Aalto University, Espoo, Finland

ABSTRACT

Maximising loudness of audio signals by restricting their
dynamic range has become an important issue in audio sig-
nal processing. Previous works indicate that an allpass fil-
ter chain can reduce the peak amplitude of an audio signal,
without introducing the distortion associated with traditional
non-linear techniques. Because of large search space and the
consequential demand of the computational needs, the previ-
ous work selected randomly the delay-line lengths and fixed
the filter coefficient values. In this work, we run on a GPU
accelerator multiple allpass filter chains in parallel that cover
all relevant delay-line lengths and perform a wide search on
possible coefficient values in order to get closer to the opti-
mal choice. Our most exhaustive method, which tests about
29 million parameter combinations, reduced the amplitude of
test signals by 23% to 31%, whereas the previous work could
only achieve a reduction of 23% at best.

Index Terms— Audio systems, digital filters, parallel ar-
chitectures, parallel processing

1. INTRODUCTION

Dynamic range reduction in audio signals is important. This
process consists of restricting the dynamic range of an audio
signal to a smaller space [1], hence allowing maximization of
loudness. Useful dynamic range reduction is achieved if the
peak amplitude of a signal decreases with respect to its RMS
amplitude.

Up to now, dynamic range reduction was achieved by us-
ing non-linear techniques [2,3]. Allpass filters were presented
previously in [4] as a method for reducing the peak to RMS
amplitude ratio, since they present a flat frequency response,
but a non-linear phase response. By modifying the phase of
the signal, maximum peak level can be reduced without in-
troducing new frequency content. Listening tests suggest that

This work was conducted in fall 2013 when J. A. Belloch was visiting the
Aalto University Department of Signal Processing and Acoustics. Thanks to
the EEBB-I-13-06059, TEC2012-38142-C04-01, GVA/2013/134 and to the
PROMETEO/2009/013 projects for funding.

if the impulse response length of the allpass filters is below 4
ms, the change is inaudible [5].

The previous work [4] analyzes in detail the behavior of
a first-order allpass filter. This analysis concludes that peak
amplitude of the impulse response is minimised when the all-
pass coefficient is equal to ±Φ, where Φ is the inverse of the
golden ratio. To three decimal places, the value of the golden
ratio is 1.618 and its inverse Φ is 0.618. This property was
also referenced in [6], without proof.

In addition, previous work [4] suggests that the unit delay
in the first-order allpass is replaced with a longer delay-line
length whose maximum value dmax is set to 30 using a sam-
ple frequency of 44.1 kHz. This maximum is chosen in order
to restrict the length of the impulse response to the range in
which the spreading of the signal is inaudible. Similar allpass
filters with a long delay line have previously been used for
artificial reverberation [7, 8] and for spectral delay in audio
processing [9].

The authors in [4] propose the structure shown in Fig. 1.
This structure is composed of M filters in parallel, where
each filter is made of a cascade of three allpass filters with
three different embedded delay-line lengths {d1, d2, d3}, and
three coefficients {a, b, c} whose values are set to a = −Φ,
b = +Φ, and c = −Φ. Their test consists of processing an
input signal through 100 filters in parallel (i.e. in their tests,
M = 100). Each one of the filters has its delay-line lengths
{d1, d2, d3} determined randomly, between 1 and the dmax

of 30. The output of every filter is examined, and the one
that produces the lowest peak amplitude is selected as the one
that offers best linear dynamic range reduction. Note that the
structure also contains a path that bypasses the processing,
since in rare cases the lowest peak amplitude produced by the
allpass filters could be higher than the input. In that case, the
input itself is selected as the output.

Their results show that even with such a small random
selection of delay line lengths, the dynamic range is gener-
ally reduced [4]. However, the theoretical maximum dynamic
range reduction is not achieved. Targeting more delay-line
length combinations in order to maximise the reduction re-
quires the use of more computational resources. This resource
problem can be vastly reduced by noticing that the process is

a

-a

d−
z

b

-b

c

-c

1 d−
z 2 d−

z 3

a

-a

d−
z

b

-b

c

-c

1 d−
z 2 d−

z 3

a

-a

d−
z

b

-b

c

-c

1 d−
z 2 d−

z 3

Selection

of

Lowest

 Peak

Amplitude

Fig. 1. Block diagram of the M parallel allpass filter chains.

intrinsically highly parallel, and hence suitable for computa-
tion with a Graphics Processing Unit (GPU). A GPU can be
considered to be a Single Instruction Multiple Data machine
(SIMD), i.e., a computer in which a single set of instructions
is executed on a large number of data sets simultaneously. The
analogy with the proposed parallel allpass structure should be
clear.

This paper presents a parallel GPU-based implementation
of the structure that aims to seek the maximum dynamic range
reduction of a signal. To this end, not only are all combina-
tions of delay-line lengths examined, but also different values
of coefficients, in order to validate or reject the use of the
golden ratio as a unique coefficient. We also assess the com-
putational performance achieved by the GPU when these are
compared with the ones obtained by a powerful multi-core
computer. The next section gives an overview of some char-
acteristics of GPUs and its program environment, and its use
in audio signal processing. In Section 3, the test setup is pre-
sented, along with its GPU-based implementation. Section 4
is devoted to analyzing the results, which are also compared
with the ones shown in previous work [4]. Finally, some con-
cluding remarks are given in Section 5.

2. GPUS IN AUDIO SIGNAL PROCESSING

Compute Unified Device Architecture (CUDA) is a software
programming model that allows the use of GPUs for applica-
tions beyond graphics rendering. GPUs have the potential of
highly parallel data processing. The recent Nvidia GPU Ke-
pler architecture [10] is composed of multiple Stream Multi-
processor (SMX), where each SMX consists of 192 pipelined
cores per SMX. A GPU device has a large amount of off-chip
device memory (global-memory) and a limited amount of fast
on-chip memory (shared-memory). The code to be executed
on the GPU by multiple elementary processes, called threads,
is written as a kernel function. A CUDA grid configuration,
which defines the number of threads and how they are dis-

tributed and grouped, must be built into the main code. We
can define a CUDA grid to be a mesh of blocks, each of them
has a mesh of threads. At runtime, the blocks are distributed
among SMXs by the scheduler. If the number of blocks ex-
ceeds the resources of the GPU, these blocks wait until other
blocks finish their computation in order to be later hosted.
Thus, the number of launched threads can exceed the num-
ber of physical cores. It is important to point out that each
thread can have up to 255 registers, and that only the threads
that belong to the same block can share data through shared-
memory.

GPU computing has already been applied to different
problems in acoustics and audio processing [11, 12]. A full
3-D model of drums in a large room was described in [13].
GPU-based multichannel local active noise control imple-
mentations can be found in [14]. There are also multichannel
spatial audio applications in the literature that use the GPU
as a co-processor for carrying out all the audio signal pro-
cessing, such as applications based on wave field synthesis
(WFS) [15], and headphone-based binaural audio [16].

3. TEST SETUP

Taking into account that the maximum delay-line length dmax

of the allpass filter is chosen to be 30, it would be easy to think
that we are dealing with 27,000 possibilities. However, as an
allpass filter cascade is a linear system and can be re-ordered
freely, many of the possibilities are redundant. All delay-line
lengths combinations are obtained if we apply Multiset theory
[17]. This theory indicates that given n elements, the number
of multisets of cardinality k is:

(n+ k − 1)!

k!(n− 1)!
. (1)

In our case, n=30 and k=3. Thus, combining all possi-
ble delay-line lengths implies 4,960 combinations of inter-
est. Additionally, there are also the three different coefficients

{a, b, c} that previously were fixed to Φ. However, as was
mentioned in Sec.1, it was not proved that Φ offers maximum
reduction for general signals, only for impulses. Therefore, it
may be advantageous to explore a larger coefficient space. If
we vary the coefficients between 0.3 and 0.7 in steps of 0.05,
we have nine possibilities for each coefficient. As we have
three coefficients, we have 729 possibilities more plus one.
We must also add the combination of the previous work (all
coefficients are equal to Φ). It is clear that a single allpass fil-
ter can have a coefficient of ±a and maintain a stable impulse
response. Therefore, we must also consider the different com-
binations of the sign in the coefficients: ±a and ∓a, ±b and
∓b, and ±c and ∓c. This implies 8 sign-based combinations
for each {a, b, c} coefficient combination. In total, to tackle
all the described combinations, we must compute 28,966,400
allpass filter chains. The use of the GPUs can reduce the re-
quired processing time to evaluate all these combinations.

3.1. GPU-based Implementation

The hardware we use is a Nvidia Tesla K20c that is based on
the Kepler architecture and is composed of 13 SMXs. The
implementation we propose aims to launch as many threads
as combinations we have. To this end, we can divide the
combinations in two: coefficients combinations and delay-
line lengths combinations. These combinations are stored in
two matrices at the GPU global-memory. The CUDA grid we
launch is two-dimensional and is composed of blocks of 256
threads. In this case, the identification of a thread is given by
two variables Col and Row.

Figure 2 shows how thread (Col, Row) performs the all-
pass filter chain with coefficient combination Row and delay-
line lengths combination Col. Each thread has three vec-
tors of size dmax whose role is to simulate the delay lines.
These 3dmax elements per thread are stored at the GPU regis-
ters. All the samples of the input are processed by the thread,
which only stores in the shared-memory the maximum abso-
lute value of the signal. Afterwards, a synchronization bar-
rier is set in order to wait for all the threads to finish. After
that, the reduction algorithm described by Harris [10] is im-
plemented. It consists in looking at the minimum of all stored
values and identifying its combination Col and Row.

4. RESULTS

The described implementation was applied to five isolated
clean musical sounds, in the same way as in the previous
work [4]. The sounds consist of single drum hits recorded
from a Roland TR-808, a single piano tone played at C3 and
a single synthesised mallet-like sound. All input signals have
a sample rate of 44.1 kHz, and are normalized so that their
peak amplitude is 1.

Previous work evaluated only 100 random possibilities.
The first test we have carried out consisted in evaluating all

CUDA grid

.

.

.

.

Col

Row

Delay-line length

combinations

Coefficient

combinations

0

4959

0

5839

1 1 1

1 1 2

1 1 3

0.3 0.3 0.3

0.3 -0.3 0.3

29 30 30

30 30 30

0.3 0.3 0.35

0.61 0.61 0.61

-0.7 -0.7 -0.7

Fig. 2. Two-dimensional CUDA grid configuration. One
thread performs an allpass filter using a delay line combina-
tion with a coefficient combination. Col defines the delay-line
lengths and the Row determines the lookup in the coefficient
table.

Sound d1 d2 d3 a b c Peak(out)

Bass PW 24 22 28 -Φ Φ -Φ 0.94
Bass 1st 29 29 29 -Φ Φ -Φ 0.89
Bass 2nd 13 28 30 -Φ -Φ -Φ 0.76
Bass 3rd 19 23 27 -0.4 -0.65 -0.7 0.74

Snare PW 21 14 26 -Φ Φ -Φ 0.77
Snare 1st 23 28 29 -Φ Φ -Φ 0.72
Snare 2nd 17 20 23 -Φ -Φ -Φ 0.71
Snare 3rd 20 21 30 -0.70 -0.65 0.60 0.69

Hi-hat PW 1 19 11 -Φ Φ -Φ 0.85
Hi-hat 1st 2 20 20 -Φ Φ -Φ 0.82
Hi-hat 2nd 1 8 18 Φ -Φ Φ 0.80
Hi-hat 3rd 11 24 26 0.55 -0.40 0.55 0.75

Piano PW 20 28 5 -Φ Φ -Φ 0.86
Piano 1st 16 16 26 -Φ Φ -Φ 0.85
Piano 2nd 14 28 30 Φ -Φ Φ 0.80
Piano 3rd 20 25 30 0.40 -0.70 0.55 0.77

Mallet PW 11 14 29 -Φ Φ -Φ 0.87
Mallet 1st 11 16 28 -Φ Φ -Φ 0.79
Mallet 2nd 3 30 30 -Φ -Φ -Φ 0.76
Mallet 3rd 5 30 30 -0.45 -0.70 -0.70 0.73

Table 1. Delay lines lengths, coefficient values and maximum
peak value that offer maximum dynamic range reduction ob-
tained after the three tests for the five sounds. Maximum re-
duction is bolded. PW, 1st, 2nd, and 3rd correspond to results
from previous work, first test, second test, and third test, re-
spectively.

delay lines length combinations using the same coefficients
that were used previously (a = −Φ, b = +Φ, c = −Φ),
which means 4960 combinations. The second test introduces
three different variations in the sign of the coefficients but
maintains the same value, i.e 14880 combinations. Finally,
third test launches the 28,966,400 combinations. Table 1

0 5M 10M 15M 20M 25M
−4

−3

−2

−1

0

1

2

3

4

5
Maximum Reduction

Number of combinations

A
m

p
li
tu

d
e

(d
B

)

Max Amplitude
Bass
Hi−hat
Snare
Piano
Synth

Fig. 3. Maximum peak value obtained for the 28,966,400
combinations for all the signals.

shows the results of the three tests and includes: the max-
imum peak value of all the signals with its corresponding
delay-line lengths, and {a, b, c} coefficients for each test. It
is noticeable how the maximum reduction in every signal
is improving as more combinations are attempted. One im-
portant result to point out is that maximum reduction is not
necessarily achieved by using Φ as a coefficient.

Figure 3 presents in an increasing way the maximum peak
value obtained for the 28,966,400 combinations for all the sig-
nals. On the left are the best results providing compressions
whereas most of the random combinations would increase the
dynamic range. Although it depends on the signal, few com-
binations achieve to reduce the dynamic range meaningfully.
Thus, in case of using allpass filters for reducing dynamic
range, many combinations must be tackled. Figure 4 com-
pares the waveforms of the input signal, the signal obtained
after processing from previous work, and the signal obtained
after processing the third test: 28,966,400 combinations. It is
noticed that the improvement is remarkable.

4.1. Computational Performance

A real-time scenario could be given in studio situation where
every signal frame would have to be processed in a time of
around 0.5 s, which implies the need to process 22050 sam-
ples (sample frequency fs=44100 Hz) in less than 0.5 s. In
order to assess the computational performance achieved by
the GPU implementation, we have also performed the three
tests in a powerful multi-core computer that has one SMPs
(Symmetric Multi-Processing) Intel Xeon CPU X5680 at 3.33
GHz, which is a hexacore. Thus, our multicore computer is
composed of six cores. We have tested all the combinations in
a sequential way (one core carries out all combinations), and

Test 1st 2nd 3rd

Combinations 4960 14800 28,966,400

One core - CPU Time 1.35 s 4.08 s 7914 s

Six cores - CPU Time 0.23 s 0.71 s 1374 s

GPU Time 0.07 s 0.32 s 760 s

Table 2. Processing time employed by the CPU and GPU to
process the three described tests.

in a parallel way (distributing among the six cores all combi-
nations) by using the programming framework openMP [18].
Table 2 shows the required time in processing 22050 samples
for the three tests. As can be appreciated, only the third test
can not be performed in real time by the GPU implementa-
tion. The GPU-based implementation outperforms the CPU-
based multicore implementation in 2-4 times, which could be
considered a limited difference. This could occur because the
GPU-based implementation is penalized for the massive use
of the registers, as commented in Section 3.1.

5. CONCLUSION

The results show that the use of the inverse of the golden ra-
tio as a coefficient in the allpass filter chains does not neces-
sarily give the absolute maximum reduction. Moreover, we
have verified that the more combinations are tackled, the bet-
ter reduction can be achieved, but a meaningful reduction is
achieved by few combinations. To compute a large number
of combinations, we have used the computational capacity of
the GPUs, which has allowed us to launch 28,966,400 combi-
nations in 760 s. This time is two times faster than perform-
ing the same number of combinations in a six-core powerful
computer.

REFERENCES

[1] U. Zölzer, “DAFX - digital audio effects (second edi-
tion),” Chichester, U.K.: Wiley, Edited by Udo Zölzer,
2011.

[2] E. Vickers, “The loudness war: Do louder, hypercom-
pressed recordings sell better?,” J. Audio Eng. Soc, vol.
59, no. 5, pp. 346–351, 2011.

[3] G. Giannoulis, M. Massberg, and J.D. Reiss, “Digital
dynamic range compressor design: A tutorial and anal-
ysis,” J. Audio Eng. Soc, vol. 60, no. 6, pp. 399–408,
2012.

[4] J. Parker and V. Välimäki, “Linear dynamic range re-
duction of musical audio using an allpass filter chain,”
IEEE Signal Processing Letters, vol. 20, no. 7, pp. 669–
672, 2013.

[5] J.M. Kates and K.H. Arehart, “Multichannel dynamic-
range compression using digital frequency warping,”

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Input Output previous work
Output third test:

28,966,400 combinations

B
a
ss

S
n
a
re

H
i-
h
a
t

P
ia

n
o

M
a
ll
et

Fig. 4. Waveforms of the five isolated musical sound, before and after being processed (previous work [4] and third test:
28,966,400 combinations). The horizontal dashed lines show the positive and negative peaks of the original waveform whilst
the solid horizontal lines show the positive and negative peaks after processing.

EURASIP J. on Applied Signal Process., vol. 18, pp.
3003–3014, 2005.

[6] D. Griesinger, “Impulse response measurements using
all-pass deconvolution,” in Proceedings of the 11th AES
Conference, Portland, May 1992.

[7] M.R. Schroeder and B.F. Logan, “Colorless artificial
reverberation,” J. Audio Eng. Soc, vol. 9, no. 3, pp.
192–197, 1961.

[8] V. Välimäki, J.D. Parker, L. Savioja, J.O. Smith, and
J.S. Abel, “Fifty years of artificial reverberation,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 20, no. 5, pp. 1421–1448, 2012.

[9] V. Välimäki, J.S. Abel, and J.O. Smith, “Spectral delay
filters,” J. Audio Eng. Soc, vol. 57, no. 7-8, pp. 521–531,
2009.

[10] “Nvidia Programming Guide,”
http://developer.download.nvidia.com/.

[11] L. Savioja, V. Välimäki, and J. O. Smith, “Audio signal
processing using Graphics Processing Units,” J. Audio
Eng. Soc, vol. 59, no. 1-2, pp. 3–19, 2011.

[12] N. Tsingos, W. Jiang, and I. Williams, “Using pro-
grammable graphics hardware for acoustics and audio

rendering,” J. Audio Eng. Soc, vol. 59, no. 9, pp. 628–
646, 2011.

[13] S. Bilbao and C. J. Webb, “Physical modeling of tim-
pani drums in 3D on GPGPUs,” J. Audio Eng. Soc, vol.
61, no. 10, pp. 737–748, 2013.

[14] M. Schneider, F. Schuh, and W. Kellermann, “The gen-
eralized frequency-domain adaptive filtering algorithm
implemented on a GPU for large-scale multichannel
acoustic echo cancellation,” in Proc. of Speech Com-
munication; 10. ITG Symposium, Braunschweig, Ger-
many, September 2012.

[15] D. Theodoropoulos, G. Kuzmanov, and G. Gaydadjiev,
“Multi-core platforms for beamforming and wave field
synthesis,” IEEE Transactions on Multimedia, vol. 3,
no. 2, pp. 235–245, April 2011.

[16] J. A. Belloch, M. Ferrer, A. Gonzalez, F.J. Martinez-
Zaldivar, and A. M. Vidal, “Headphone-based virtual
spatialization of sound with a GPU accelerator,” J. Au-
dio Eng. Soc, vol. 61, no. 7/8, pp. 546–561, 2013.

[17] W.D. Blizard, “Multiset theory,” J. Formal Logic Notre
Dame, vol. 30, no. 1, pp. 36–66, 1989.

[18] “OpenMP.,” http://www.openmp.org.

